

The Acterna FST-2310 TestPad is an all-in-one testing solution that performs SONET, SDH, T-carrier, data, and circuitswitched testing to meet the varied testing requirements of mobile technicians. Its modular architecture protects long-term investment by providing the flexibility, scalability, and upgradeability to support evolving test needs.

Most tests performed using the FST-2310 can be done in only a few button pushes, without the need to sift through hidden setup menus. Additionally, because technicians need only minimal training to use the FST-2310, testing objectives are addressed quickly and the cost of ownership is significantly reduced.

Highlights

- SONET/T-carrier transmission testing from DS1 to OC-48 rates
- SDH transmission testing at STM-16, STM-4 and STM-1 rates
- Circuit-switched testing capabilities including GR-303, ISDN, signaling, voice frequency (VF), and digital data service (DDS)
- ATM testing capabilities including CBR/VBR traffic generation, QoS measurements, 0.191 test cell generation, and support for OAM alarm and loopback cells
- Engineered for mobile technicians with rugged construction, lightweight design, and battery-powered operation
- Process oriented testing features such as test scripting and remote control operation

Key features of the FXT-2310 include:

Application-driven icons

Test application buttons are labeled with icons that clearly depict the way the test is performed on the circuit; for example, select the "MON/THRU" icon when performing circuit-monitoring tests – select the "TERM" icon when performing circuit-terminating tests. The icons and quick setup buttons enable technicians to use the module effectively with very little training (figure 1).

Simultaneous results analysis for different signal rates

Identify the source of problems quickly by using the FST-2310's dual results window to analyze results from different signal rates simultaneously. Simultaneous results analysis can also be performed on different signal results (for example, level and bit errors) allowing for easy results correlation and quick problem identification.

Autoconfiguration

Support for autoconfiguration is provided for all key applications.
Autoconfiguration is capable of setting different test parameters, such as framing and pattern, as well as detecting the signal's multiplexed composition. This enables users to reduce the time required for test setup. Additionally, the FST-2310 has the ability to save and store up to 10 test set configurations that can be recalled for future use.

Remote control

Remotely configure tests and analyze results in detail using the remote control GUI option. This allows technicians to conveniently operate the module from a remote location using the FST-2310's graphical user interface (GUI) on a remote PC. The remote control GUI feature enables technicians to connect to the FST-2310 through the PCMCIA serial or modem card to perform tests and collect test results.

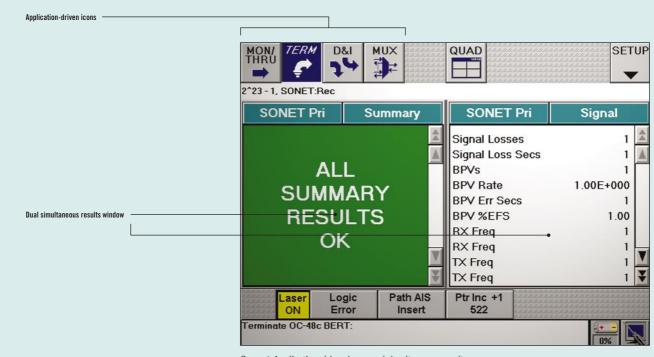


figure 1 Application-driven icons and simultaneous results

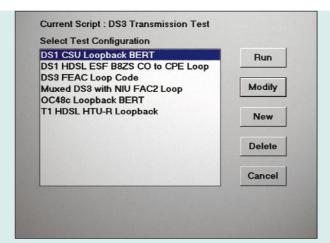
Scripting and automation

Reduce setup time and increase efficiency of tests by running preprogrammed scripts from a PCMCIA card. The DS1/DS3/SONET script libraries supported on the FST-2310 enable technicians to perform tests quickly and verify test results against specific criteria for a simple PASS/FAIL result. Scripts can also be customized to meet the methods and procedures of any service provider (figure 2).

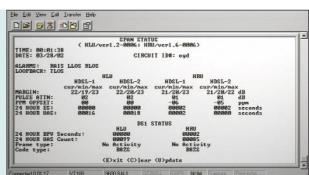
VT100 emulation

Perform VT100 terminal emulation to connect to network elements to configure NE parameters and monitor available statistics (figure 3).

Timed prints and error logs


Print results every few hours, at the end of a test, or at the occurrence of an error using the FST-2310's print features.

Through mode for all rates


Gain access to test circuits (DS1 through OC-48) even when no test access point is provided. The FST-2310's throughmode capability monitors test circuits by unobtrusively channeling network traffic through the test instrument.

Physical, active port, and laser active LEDs

A bright array of physical LEDs on the front panel summarizes results and clearly identifies errors detected during a test. Active port LEDs on the top panel indicate the interface(s) to use for specific tests – thus eliminating user error when connecting the FST-2310 to the network. Laser-active LEDs indicate when the transmit laser is active and when laser pulses are received.

 $figure \ 2 \ Use \ automation \ scripts \ to \ verify \ network \ performance \ with \ the \ touch \ of a \ single \ button$

 $figure\ 3\ Perform\ VT100\ emulation\ to\ configure\ network\ elements\ and\ monitor\ statistics$

Applications

SONET analysis

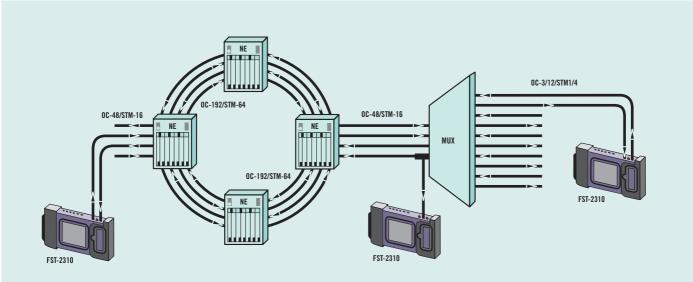
The FST-2310 can be used to verify end-to-end network performance via BER testing at SONET rates up to OC-48 as well as to analyze SONET network performance under abnormal conditions by simulating pointer justifications and inserting error and alarm conditions. Users can also manipulate and analyze all applicable SONET overhead bytes to verify network element performance (for example, pointer adjustments, alarms, DCC bytes, SONET sync messages, and K1/K2 bytes) (figure 4).

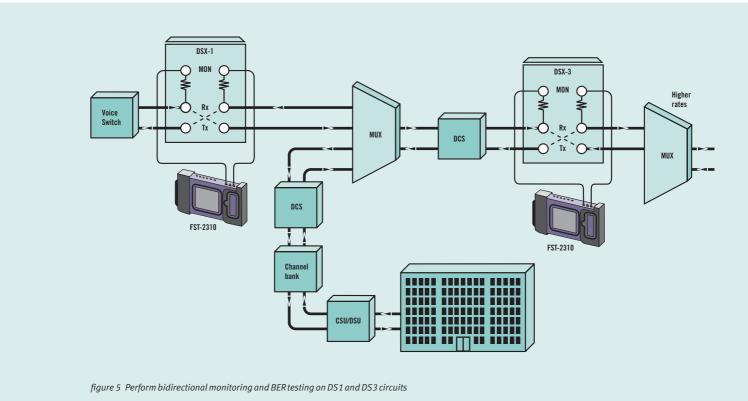
Qualify the performance of SONET networks quickly and easily with the FST-2310's intuitive GUI. By supporting various payload mappings, the FST-2310 enables testing and verification of individual payloads inside an OC-n signal (DS1, DS3, multiplexed DS3, VT1.5, OC-n subrates).

Additional functionality includes the ability to drop and insert all mappings (OC-12/3/DS3/DS1) from an OC-48 signal. Monitor individual DS1, DS3, or OC-n subrate payloads within SONET signals for analysis, and verify signal power and signal frequency of a received signal. Technicians can also name and identify trace messages and payloads by using the FST-2310's userconfigurable path trace messages.

SDH analysis

The SDH functionality on the FST-2310 enables performance verification of SDH networks at the STM-16, STM-4 and STM-1 rates. The FST-2310 supports performance testing of individual payloads inside an STM-n signal (STM-16c, STM-4c, STM-1c). Ensure proper network operation with error/alarm analysis as well as the manipulation/analysis of all applicable SDH overhead bytes. Correct network timing can be monitored through pointer adjustment measurements.




figure 4 Verify network performance at various points of a SONET/SDH network

DS3 analysis

Ensure DS3 network performance by performing end-to-end BER testing and measuring frequency and signal levels on the circuit under test. Technicians can qualify networks for accurate multiplexed operation by performing BER testing on one or all DS1 channels transmitted by a DS3 multiplexer. Access to the DS3 signal is provided from the DS3 interface or a DS3 signal embedded in an STS-1, OC-3, OC-12, or OC-48 circuit. Reduce total testing time on DS3 circuits by using the dual DS3 receivers to perform bidirectional monitoring, allowing for quick isolation of problems (figure 5).

DS1 analysis

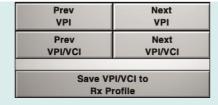
Verify T1 network performance with the FST-2310's integrated BER, signal, alarm, and timing tests. A wide range of stress test patterns, combined with bidirectional monitoring, enables technicians to identify and sectionalize circuit problems and quickly qualify circuits for service acceptance. Users can perform VF analysis of voice trunks with the FST-2310's support of VF levels and tones measurements. The drop-andinsert test feature qualifies a DS0 channel while the T1 circuit remains in service. The FST-2310 isolates sources of timing errors by using an external bits clock input to identify network synchronization problems. Access to the DS1 signal is provided from the T1 interface or from the DS1 signal embedded in a DS3, STS-1, OC-3, OC-12, or OC-48 circuit (figure 5).

5

ATM analysis

Analyze ATM circuits at OC-12c, OC-3c, DS3, and DS1 rates. Generate multiple cell streams to perform key quality of service measurements (cell delay variation, cell error ratio, cell loss ratio, round-trip delay), cell statistics and bandwidth utilization. The FST-2310 supports OAM alarm (VP/VC AIS/RDI) and loopback cells as well as modification of the VPI/VCI, PTI, CLP, and GFC fields of the cell header. Also supported are the 0.191 ITU standard test cell and the ability to save up to four transmit profiles (figure 6).

GR-303 protocol link analysis


Perform basic GR-303 protocol link analysis in Monitor/Through mode at the 64-K data rate on a call processing (TMC/CSC) or operations channel (EOC).

Analysis is conducted unobtrusively to decode messages on the system's protocol links. Technicians can monitor call statistics, filter call control messages based on cause code, or monitor layer-2 packet statistics to qualify proper functioning of the GR-303 interface. The GR-303 option also provides support for tracing calls based on filter criteria (for example call reference value – CRV) established through the test setup. Once the call is traced, clicking on the appropriate call provides decodes of the protocol message that were exchanged to establish the call.

ISDN PRI testing

Emulate an ISDN TE device, such as a PBX, to place and receive voice and data calls on an ISDN PRI circuit. The Acterna FST-2310 TestPad enables users to monitor and capture signaling messages exchanged on the D-channel. Caller ID/Caller ID blocking, 21-digit dialing and DTMF digits are all supported. Call status results and progress reports provide an additional level of detail to ensure calls are successfully established (figure 7).

The FST-2310's ISDN functionality supports AT&T specific call control (5ESS, DMS-100, National ISDN-II). The FST-2310 can be used for backup D-channel testing to switch between standby and in-service D-channels, bidirectional monitoring with full text decodes for protocol messages exchanged on the D-channel, as well as testing of multiple DS1 lines with NFAS testing.

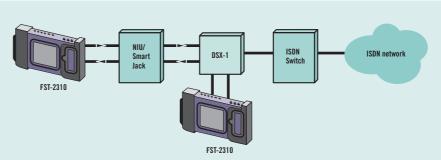


figure 6 Search for ATM traffic on DS1, DS3, OC-3, or OC-12 circuits

figure~7~Perform~ISDN~terminal~emulation~as~well~as~monitor~ISDN~links~from~DS1, DS3~and~STS-1~circuits

Signaling analysis

Emulate the PBX/switch for placing and receiving calls and monitor signaling digits for detailed analysis. The FST-2310 signaling features include E&M, loop start, and ground start support for placing and receiving calls. The FST-2310 provides support for DP, DTMF, and MF digit recognition. It can also perform interevent and interdigit delay measurements as well as event and digit duration measurements.

The signaling (ABCD) bits for all DSOs can be displayed in one simple result window. A speaker, microphone, and handset are provided for verifying voice integrity.

Loopback applications

Sectionalize T1/T3 circuits with the FST-2310 and its support for NIU/CSU loopback and user-programmable loop codes. The FST-2310 can sectionalize the network and verify the functionality of intelligent line-equipment and repeaters with its ability to loopback T1/T3 network elements (figure 8).

Online help

The easy-to-use online help screens provide information on product descriptions, common applications, product specifications, cabling diagrams, and contact information (figure 9).

Software support

All Acterna products are continually being updated through software enhancements. The Acterna FST-2310 TestPad, in particular, keeps pace with advancing technologies through enhanced software revisions to add value to its users and customers. Software upgrades are done in the field in minutes through the PCMCIA card interface.

	l Near Arm
Arm	Disarm
Loop Up	Loop Down

figure 8 Send loop codes to a T1 NIU/CSU



figure 9 Online help provides quick cards and cabling diagrams

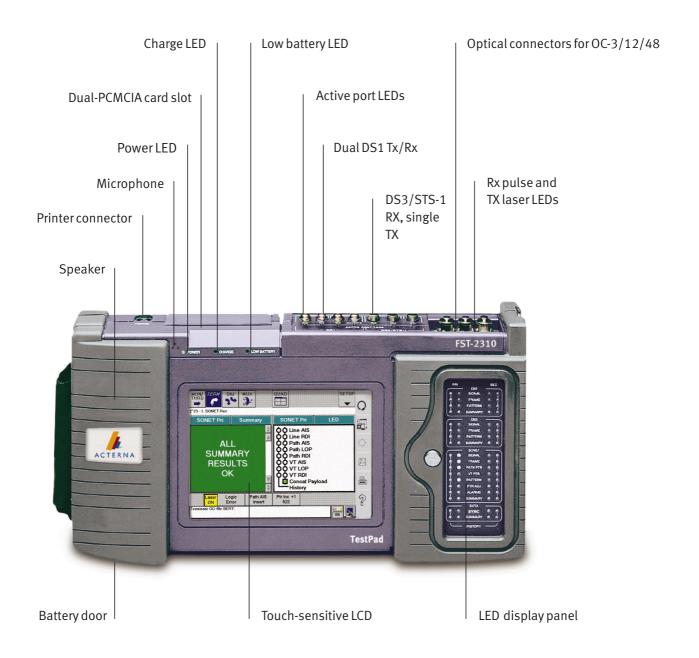


figure 10 Physical characteristics of the FST-2310

Technical specifications Physical characteristics Overall dimensions 7.5 x 11.5 x 2.25 in

(19 x 29.2 x 5.7 cm) Weight 5 lb (2.27 kg), with battery

Environment

Temperature range

32°F to 113°F (0°C to 45°C) Operating Storage -4°F to 158°F (-20°C to 70°C) Meets IEEE-743 Shock and vibration

Electrical

10.8 V Nickel-Metal-Hydride (NiMH) Battery type Operating time Up to 1.5 hours for performing DS3/DS1 tests Recharging period Maximum 1.5 hours with unit off 19 VDC, 2.6 amps AC adapter 90-240 VAC, 45-65 Hz

Optical specifications for OC-48

Optical connectors

1 OC-48 Receive - FC, SC, or ST

1 OC-48 1310 nm High-Power Transmit – FC, SC,

1 OC-48 1550 nm High-Power Transmit – FC, SC, or ST (dual wavelength configurations only)

Transmitter

Single/multimode fiber compatible

Wavelength 1310 nm/1550 nm Clock frequency accuracy ±3 ppm High-power TX output +3 dBm to -2 dBm

Receiver

Single/multimode fiber compatible

Dual wavelength 1310 nm/1550 nm Rx clock frequency ±3 ppm -8 dBm to -28 dBm Receive level sensitivity Receiver shutdown -6 dBm or higher

Optical specifications for OC-3/12

Optical connectors

1 OC-3/12 Receive - FC, SC, or ST 1 OC-3/12 Transmit – FC, SC, or ST

Transmit signal

Single/multimode fiber compatible

Average output power -8 dBm to -15 dBm (+3 dBm to -2 dBm on 0C-48-equipped units)Per Bell Core GR-253-C-1995 Eye diagram Clock frequency accuracy

±3 ppm ±1 ppm per year

Receive signal

Single/multimode fiber compatible

Average input power receive level

-8 dBm to -28 dBm $\pm 500 \text{ ppm}$ Frequency range Clock frequency accuracy ±3 ppm ±1 ppm per year Jitter tolerance Per Bell Core GR-253-CORE-1995

Level measurement

Range -5 to -45 dBm Accuracy $\pm 2 dB$ Resolution $\pm 0.1 \text{ dB}$

Input specifications for DS3 AND STS-1

Connector type WECO 560A jack Input level High Accepts nominal 1.2 Vp.

0 ft of cable from high source DSX Accepts nominal 0.6 Vp, 450 ft of cable from high source Inw Accepts nominal 0.3 Vp,

900 ft of cable from high source Maximum signal level without errors with 1.7 Vp Minimum signal level without errors with 0.025 Vp Maximum input signal level with 2.5 Vp

Input impedance 75 ohms nominal. unbalanced to ground Jitter tolerance Exceeds TR-TSY-000499

Output specifications for DS3 AND STS-1

WECO 560A jack Connector type

Output level

Nominal 1.2 Vp; signal meets High ANSI T1.102-1993 and ITU-T G.703 when subject to 450 ft of cable loss

DSX Nominal 0.61 Vp; signal meets ANSI T1.102-1993 and ITU-T G.703 Inw Nominal 0.31 Vp Output impedance 75 ohms nominal,

unbalanced to ground Per TR-TSY-000499 Jitter tolerance

Frequency

DS3 44.736 MHz ±10 ppm STS-1 51.84 MHz ± 3 ppm ± 1 ppm per year

Input specifications for DS1

Bantam jack Connector type 1.544 MHz ±50 ppm Frequency Impedance **BRIDGE** 1000 ohms minimum TERM 100 ohms ±5% DSX-MON $100 \text{ ohms } \pm 5\%$ Range **BRIDGE** +6 to -35.0 dBdsx TERM +6 to -35.0 dBdsx DSX-MON -10 to -26.0 dBdsx of resistive loss Per Bell Pub 62411-1990 Jitter tolerance

Accuracy

Receive level measurement

From 6 dBdsx to -15 dBdsx, accuracy of ± 1 dB From -16 dBdsx to -30 dBdsx, accuracy of ± 2 dB From -31 dBdsx to -40 dBdsx, accuracy of ±3 dB

Simplex current measurement

 $\pm 2\%$ or ± 2 mA to 60 mA

 $\pm 3\%$ or ± 3 mA from 61 mA to 175 mA

Frequency measurement accuracy

±3 ppm ±1 ppm/year

Output specifications for DS1

Connector type Bantam jack

LBO level

Line build-out of 0, -7.5, -15.0, and -22.5 dB of cable loss at 772 Hz

LBO tolerance

±2 dB for -22.5 at 772 kHz

 ± 1 dB for 0, -7.5, and -15 at 772 kHz

Internal timing ± 3 ppm ± 1 ppm per year Line codes AMI or B8ZS Error insert type Logic, BPV, or Frame Pulse shape Per applicable specifications

Sources

Bell Pub 62411-1990

Specifications/recommendations used

IEEE /43
ITU-T recommendation G.703
AT&T publications CB113, CB119, CB132, CB143
ANSI T1.403-1995
AT&T publications PUB62508, PUB62411
ITU-T recommendation G.824
TR-TSY-000499, category 1.2
ANSI T1.102-1993
Bellcore GR253-Core-1995

User Interface Module TestPad 2000 (includes soft 2000-SV3 carrying case, kickstand, AC adapter/charger, printer cable)

FST-2310 Application Modules DS1 Communications Analyzer TB2310-DS1 DS3/DS1 Communications Analyzer TB2310-DS3 STS-1/DS3/DS1 TB2310-STS1 Communications Analyzer OC3/3c, STS-1/DS3/DS1 TB2310-0C3XX* Communications Analyzer OC12/12c, OC3/3c, TB2310-0C12XX* STS-1/DS3/DS1 Communications Analyzer TB2310-0C48XX* OC48/48c, OC12/12c, OC3/3c, STS-1/DS3/DS1 Communications Analyzer OC48/48c, OC12/12c, TB2310-0C48DXX*

OC3/3c, STS-1/DS3/DS1 Communications Analyzer with 1310 nm and 1550 nm laser

Analyzer Options						
Advanced stress patterns	TB2310-ASP					
ATM analysis for OC12c	TB2310-ATM-0C12					
ATM analysis for OC3c	TB2310-ATM-0C3					
ATM analysis for DS3	TB2310-ATM-DS3					
ATM analysis for DS3 and DS1	TB2310-ATM-DSN					
Digital data services (DDS) ana	lysis TB2310-DDS					
Secondary receiver for DS3 and STS-1 interfaces						
	TB2310-DUALRX					
Remote control GUI	TB2310-REM					
SDH testing at STM-16, STM-4,	and STM-1					
	TB2310-SDH					
DS3/DS1 script library	TB2310-ELE					
SONET/DS3/DS1 script library	TB2310-0PT					
Fractional T1	TB2310-FT1					
GR-303 analysis	TB2310-GR303					
Intelligent Line equipment	TB2310-ILE					
Primary rate ISDN	TB2310-PRI					
Signaling	TB2310-SIG					
VF PCM TIMS	TB2310-TIM					
VT100 emulation	TB2310-VT100					
Optional accessories						
External battery charger	AC-31705					
Hanging strap	AC-31891					
Replacement battery	BA-014081					
Carrying case, large, soft	CC-44605					
Carrying case, multimodule, sof	ft CC-451-58					
Carrying case, hard	CC-45458					
Rack mount for TestPad	RM-TTC2000					

^{*}Specify type of optical connector: FC, SC, or ST

Hardware packages											
	DS1	DS3	STS-1	0C3	OC12	0C48	OC48D	UIM	VT100	Dual Rx	
TB2310-P1	Χ	Χ	Χ					Χ	Χ	Χ	
TB2310-P2	Χ	Χ	Χ	Χ				Χ	Χ	Χ	
TB2310-P3	Χ	Χ	Χ	Χ	Χ			Χ	Χ	Χ	
TB2310-P4	Χ							Χ	Χ	Χ	
TB2310-P5	Χ	Χ						Χ	Χ	Χ	
TB2310-P6	Χ	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	
TB2310-P7	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Χ	
Software packag	ges										
	FTI	TIM	SIG	ASP	ILE	DDS	PRI	OC12 ATM	OC3 ATM	DSN ATN	
TB2310-SW1	Χ	Χ	Χ	Χ							
TB2310-SW2	Χ	Χ	Χ	Χ	Χ	Χ					
TB2310-SW3	χ	Χ	Χ	Χ			Χ				
TB2310-SW4	χ	Χ	Χ	Χ	Χ	Χ	Χ				
TB2310-SW5								Χ	Χ		

Additional application modules available FST-2510a High Speed Optical Analyzer

TB2310-SW6

FST-2416 SDH Services Module FST-2209 T1/T3 Services Module FST-2207 T1/T3 Wireless Services Module FST-2230 E1 Data Communications Module FST-2109 Copper Analyzer Module

FST-2357 DSL Broadband Services Module FST-2802 Gigabit Ethernet Services Module BAT-2700 Base Station and Air Interface Test Module Acterna AdvantagesM – adding value

Acterna is the world's largest provider of test and management solutions for optical transport, access and cable networks, and the second largest communications test company overall. Focused entirely on providing equipment, software, systems and services, Acterna helps customers develop, install, manufacture and maintain optical transport, access, cable, data/IP and wireless networks.

Worldwide Headquarters **Regional Sales** Headquarters

20400 Observation Drive Germantown, Maryland 20876-4023 USA

Acterna is present in more than 80 countries. To find your local sales office go to: www.acterna.com

North America 20400 Observation Drive

Germantown, Maryland 20876-4023 Toll Free: +1 866 ACTERNA Toll Free: +1 866 228 3762 Tel: +13013531560x2850 Fax: +1 301 353 9216

Latin America Av. Eng. Luis Carlos Berrini 936/8° e 9° andares 04571-000 São Paulo SP-Brazil Tel: +55 11 5503 3800 Fax: +55 11 5505 1598

Asia Pacific 42 Clarendon Street PO Box 141 South Melbourne Victoria 3205 Australia Tel: +61 3 9690 6700 Fax:+61 3 9690 6750 Western Europe Arbachtalstrasse 6 72800 Eningen u.A.

Tel: +49 7121 86 2222 Fax:+49 7121 86 1222

Eastern Europe, Middle East & Africa Elisabethstrasse 36 2500 Baden Austria Tel: +43 2252 85 521 0 Fax: +43 2252 80 727

1st Neopalimovskiy Per. 15/7 (4th floor) RF 119121 Moscow Russia Tel: +7 095 248 2508 Fax:+7 095 248 4189

© Copyright 2002 Acterna, LLC. All rights reserved.

Acterna, The Keepers of Communications, and its logo are trademarks of Acterna, LLC. All other trademarks and registered trademarks are the property of their respective owners. Major Acterna operations sites are ISO 9001 registered. Note: Specifications, terms and conditions are subject to change without notice.

