Specifications

Appendix A

Measurement Modes

% FS Phase sensitive detector output

expressed as a percentage of the present

full-scale sensitivity setting

SIGNAL Phase sensitive detector output

expressed directly in terms of voltage at

input to signal channel

NOISE Noise in a bandwidth defined by the output filter

time constant and slope controls and centered at the reference frequency expressed as a percentage of

the present full-scale sensitivity setting

Harmonic Fundamental (F) or 2F modes

Displays & Indicators

Two, $3\frac{1}{2}$ -digit liquid crystal displays, analog center-zero panel meter and back-lit LED indicators show the settings of all the main instrument controls and outputs.

Signal Channel

Voltage Inputs

Modes A only or Differential (A-B)

Full-scale Sensitivity 100 nV to 3 V rms in a 1-3-10 sequence

Impedance $100 \text{ M}\Omega \text{ // } 30 \text{ pF}$

Maximum Input $\pm 100 \text{ V DC}$; 30 V AC pk-pk without

damage, 10 V AC pk-pk without saturation

Voltage Noise $5 \text{ nV/}\sqrt{\text{Hz}}$ at 1 kHz typ

CMRR > 100 dB at 1 kHz degrading by 6 dB/octave

Frequency Response 0.5 Hz to 120 kHz

Grounding BNC shields can be grounded or floated via 1 k Ω

to ground

Current Input

Mode $10^6 \text{ V/A or } 10^8 \text{ V/A}$

Full-scale Sensitivity

 10^{8} V/A 10 fA to 30 nA in a 1-3-10 sequence 10^{6} V/A 10 fA to 3 μ A in a 1-3-10 sequence

Frequency Response

10⁸ V/A -3 dB at 330 Hz 10⁶ V/A -3 dB at 60 kHz

Impedance

 $\begin{array}{ll} 10^8 \text{ V/A} & <2.5 \text{ k}\Omega \text{ at } 100 \text{ Hz} \\ 10^6 \text{ V/A} & <250 \text{ }\Omega \text{ at } 1 \text{ kHz} \end{array}$

Maximum Input 15 mA continuous, 1 A momentary

without damage. $10 \mu A$ AC pk-pk without saturation on 10^6 V/A; $100 \mu A$ AC pk-pk

without saturation on $10^8 \, \text{V/A}$

Noise

10⁸ V/A 13 fA/ $\sqrt{\text{Hz}}$ at 500 Hz 10⁶ V/A 130 fA/ $\sqrt{\text{Hz}}$ at 1 kHz

Grounding BNC shield can be grounded or floated via 1 k Ω

to ground

Line Notch Filter > 34dB attenuation $(a) \pm 1\%$ of 50 or 60 Hz

and/or 100 or 120 Hz

Dynamic Reserve 130 dB max

Gain Accuracy

Flat Mode 1% typical Bandpass Mode 2% typical

Gain Stability 200 ppm/°C typical

Reference Channel

TTL Input

Frequency Range 0.5 Hz to 120 kHz

Analog Input

 $\begin{array}{ll} \text{Impedance} & 1 \text{ M}\Omega \text{ // } 30 \text{ pF} \\ \text{Frequency Range} & 0.5 \text{ Hz to } 120 \text{ kHz} \end{array}$

Level

Sinusoidal Input 1.0 V rms**
Squarewave Input 100 mV rms**

**Note: Lower levels can be used with the analog input at the expense of increased phase errors.

Maximum input voltage 5.0 V rms

Phase

Set Resolution 0.1° (front-panel) or 0.005° (computer command

only) increments

Accuracy ±1° typical

Noise 0.005°rms at 100 ms TC, 12 dB/octave

Orthogonality

Above 5Hz $90^{\circ} \pm 0.5^{\circ}$ 0.5Hz - 5Hz $90^{\circ} \pm 5^{\circ}$ max Drift (Flat Mode) $< 0.05^{\circ}/^{\circ}$ C

Lock Acquisition Time 2 cycles + 100 ms

Demodulator

Description Switching type demodulators operating in either square

wave or Walsh function modes.

Output Zero Stability

High Dynamic Reserve 500 ppm/°C Normal 50 ppm/°C High Stability 5 ppm/°C

Harmonic Rejection

Low-Pass >80 dB at 1 kHz Bandpass >60 dB at 1 kHz

Time Constant

Main output 1 ms to 3 ks in a 1-3-10 sequence

Roll-off 6 and 12 dB/octave
P.S.D. Monitor Output 100 μs nominal
Roll-off 6 dB/octave only

Offset Auto and Manual: $\pm 150 \% FS$

Oscillator

Frequency

Range 0.5 Hz to 120 kHz Setting Resolution better than 1%

Absolute Accuracy $\pm 2\%$

Distortion (THD) 0.5%

Amplitude

Range

Front panel 1 mV to 1.999 V

Computer Control 1 mV to 2.000 V and 5.000 V

Setting Resolution

1 mV to 500 mV 1 mV 501 mV to 2 V 4 mV

Output

Impedance 900Ω

Auxiliary Inputs

AUX ADC INPUT CH1 - CH4

 $\begin{array}{ll} \text{Maximum Input} & \pm 15 \text{ V} \\ \text{Resolution} & 1 \text{ mV} \end{array}$

Input Impedance $1 \text{ M}\Omega // 30 \text{ pF}$

Sample Rate

CH1 only 200 Hz max.

CH1 - CH4 50 Hz max.

Trigger Mode Internal or External Trigger input TTL compatible

Outputs

OUT Analog Output

Function Output, Noise, Ratio and Log Ratio. Amplitude $\pm 15 \text{ V } (\pm 10.0 \text{ V} = \pm \text{ full scale})$

Impedance $1 \text{ k}\Omega$

Signal Monitor

 $\begin{array}{ll} \text{Amplitude} & \pm 10 \text{ V max} \\ \text{Impedance} & 1 \text{ k}\Omega \end{array}$

Aux D/A Outputs

Maximum Output $\pm 15 \text{ V}$ Resolution1 mVOutput Impedance $< 150 \Omega$

Reference Output

Waveform 0 to 5 V square wave Impedance TTL compatible

Power - Low Voltage $\pm 15 \text{ V}$ at 100 mA rear panel DIN connector for

powering **SIGNAL RECOVERY** preamplifiers

Interfaces

RS232 and GPIB (IEEE-488). All settings can

be adjusted from the front-panel

General

Power Requirements

Voltage 110/120/220/240 VAC

Frequency 50/60 Hz Power < 130 VA

Dimensions

Width 440 mm (17.25") Depth 89 mm (16.5 ")

Height

With feet 105 mm (4.1 ") Without feet 89 mm (3.5 ")

Weight 9.1 kg (20 lbs)

All specifications subject to change without notification

Pinouts

- Appendix **B**

B1 RS232 Connector Pinout

Figure B-1, RS232 Connector (Female)

Pin	Function	Description
1	Earth Ground	Ties the chassis of the model 5209 to that of the computer
2	Transmit Data	The 5209 transmits data on this line
3	Receive Data	The 5209 receives data on this line
4	Request to Send	This line is asserted by the 5209 when the input buffer is not full
5	Clear to Send	The computer should assert this line to allow the 5209 to transmit data. If left unconnected, the line assumes the asserted state allowing data transmission to proceed
7	Logic Ground	Data signals are referenced with respect to the voltage at this pin

All other pins are not connected

B2 Preamplifier Power Connector Pinout

Figure B-2, Preamplifier Power Connector

Pin	Function
1	-15 V
2	Ground
3	+15 V

Pins 4 and 5 are not connected. Shell is shield ground.