#### **SPECIFICATIONS**

# Number of Output Channels: 2

## D.C. Output Characteristics

Output Voltage Range:  $\pm 5$  V into 50  $\Omega$ ;  $\pm 10$  V into >10 k $\Omega$  load.

Maximum output current: ±100 mA

Output impedance:  $50 \pm .5 \Omega$ 

Minimum amplitude range: <100  $\mu$ V full-scale into 50  $\Omega$  D.C. Output Accuracy: (at calibrate time): 0.5% FSR into 50.00  $\Omega$  for FS $\geq$ 500 mV

1.0% FSR  $\pm$  500  $\mu$ V into 50.0  $\Omega$  for FS <500 mV. (Accuracy

gradually drops from .5% to 1% at 50 mV FS)

0.3% FSR into user supplied load of from 49  $\Omega$  to 1 M $\Omega$  for

FSR  $\geq$ 10% of Max Output Voltage Range.

Output Temperature Coefficient: <0.01% of FSR/ °C typical

Waveform DAC Resolution: 12 bits

Gain Adjust Resolution: 0.05% Amplitude

Offset Adjust Resolution: 0.05% FSR

Waveform DAC Int. Non-Linearity:  $\pm 0.03\%$  typ.;  $\pm 0.05\%$ 

max

Waveform DAC Diff. Non-Linearity:  $\pm 0.75$  lsb typ;  $\pm 1$  lsb max, monotonic

Offset Adjust Range: ± Full Scale Amplitude (wrt midscale of waveform); must be within Output Voltage range.

## **Dynamic Characteristics:**

Risetime/Falltime:  $\leq 8$  nsec (5.5 nsec typ) Overshoot and Ringing:  $\leq 5\%$ , typically 2%

Total Harmonic Distortion:  $\leq -65$  dBc, f < 200 kHz  $\leq -55$  dBc, f < 1 MHz  $\leq -45$  dBc, f < 5 MHz

Spurious and non-harmonic distortion:

< -65 dBc,  $f \le 1$  MHz < -60 dBc, f > 1 MHz excluding the band within

1 kHz of carrier

Settling Time: < 20 nsec to 1% typical,

50 nsec max.

Interchannel Crosstalk: ≤ 0.05%, tested with both channels at

10 V amplitude.

Channel-to-Channel Analog Delay Difference: ≤ 3 nsec

Low Pass Output Filter:

Corner Frquency (-3 dB): 36 MHz

Source Impedance: 50  $\Omega$ Filter Input Impedance: 50  $\Omega$ Filter Load Impedance:  $50 \Omega$ 

Passband Flatness:

DC to 10 MHz: 0.1 dB 10 MHz to 25 MHz: 0.4 dB Attenuation at 50 MHz: > 40 dB Maximum Applied DC Voltage: 7 V

Maximum AC Signal Amplitude: 12 V p-p Input and Output Connectors: BNC female

Noise

Signal to Noise Ratio (non-coherent): >70 dB rms P-P Noise:  $\leq 0.1\%$  FS +  $\leq 2$  mV excluding glitch Max Glitch Energy: (5 X 10<sup>-11</sup> V-sec) times FS

Timebase

Max. Waveform Point Rate: 50 Mpoints/sec each channel

Range: 20 nsec/point to 100 sec/point

Resolution: .035%

Accuracy:  $\leq$  5 ppm at achievable setpoints, 23° C,

115 VAC/60 Hz, after 30 minute warmup

Stability: <0.5 ppm per °C

Waveform Memory

Fast Memory Length: 64 Kpoints single channel

Waveform Length Resolution: single channel: 4 pt blocks

dual channel: 2 pt blocks

**Analog Output** Protection

Protected against application of up to ±40 V DC

**Digitial Output** Specification

Output Channels: 2 channels with Channel 1 data corresponding to the channel 1 analog output. Channel 2 digital data corresponds to the channel 2 analog output. Digitial data is normalized so that a data value of 4095 (FFF<sub>16</sub>) on the 12 msbs of the digital word (D15-D4) corresponds to maximum analog amplitude and a data value of  $0(000_{16})$  on the 12 msbs of the digital word corresponds to the minimum analog output.

Maximum Digital Pattern Length: Same as for Analog Output

Digital Outputs per Channel: 16 data lines, clock, 17 grounds

Maximum Data Output Rates: (Identical to 9112 analog sample rate) Single or Dual channel operation: 50 Msamples/sec

(20 nsec per word)

Timing: (All outputs unloaded)

Digitial Clock to Analog Output: Clock preceeds the Analog out-

put by 1 clock period +16 nsec ±3 nsec Digital Clock to Digital Data: 4 nsec typical Clock Duty Cycle: 40% min, 60% max

Setup Time Provided: 15 nsec min at 50 Megawords/second

typically setup time = (sample period)-(hold

time)

Data to Data Skew Time: ±0.8 nsec max within each channel's

data word

Hold time Provided: 2 nsec min, 4 nsec typ

Channel to Channel Skew:

Clock: ± 0.8 nsec max

Data to Data Skew Time: ±1.6 nsec for any

data line to data line

Risetime: 5 nsec max (20% - 80%)
Falltime: 3.5 nsec max (20% - 80%)

Both risetime and falltime measured 20%-80% after 3 ft of Twist 'N Flat cable. Load at termination is two LS TTL data inputs plus a probe loading of 5 k  $\Omega$  in parallel with 2 pF

# Logic Levels:

V(high) min: +2.7 V at +1 mA V(low) max: +0.75 V at -3.2 mA

Absolute max applied voltages: +5.5 v, -0.5 V

# TTL Output Connector Configuration

Same pattern for channel 1 and channel 2 All TTL outputs are single ended, back terminted in 75  $\Omega$ 

| Signal | <u>P i</u> | n #<br> | Signal                      |
|--------|------------|---------|-----------------------------|
| Ground | 1          | 2       | Clock                       |
| Ground | 3          | 4       | D0 (LSB)                    |
| Ground | 5          | 6       | D1                          |
| Ground | 7          | 8       | D2                          |
| Ground | 9          | 10      | D3                          |
| Ground | 11         | 12      | D4 (LSB of 12 bit waveform) |
| Ground | 13         | 14      | D5                          |
| Ground | 15         | 16      | D6                          |
| Ground | 17         | 18      | D7                          |
| Ground | 19         | 20      | D8                          |
| Ground | 21         | 22      | D9                          |
| Ground | 23         | 24      | D10                         |
| Ground | 25         | 26      | D11                         |
| Ground | 27         | 28      | D12                         |
| Ground | 29         | 30      | D13                         |
| Ground | 31         | 32      | D14                         |
| Ground | 33         | 34      | D15 (MSB)                   |

NOTE 1: Suggested connector type 3-M Part No. 3421-7034 or equiv. (34 pin .1"X.1" flat cable socket connector with strain relief). I required for each channel's output.

NOTE 2: Normal flat cables may be utilized, however best performance may be achieved with Twisted Pair Flat cable such as Spectra Strip #455-248-34 (17 pair Twist N' Flat, 28 AWG).

**Power on LED – ON** when power is applied to the instrument Trigger Armed LED - ON when awaiting a trigger signal.

Waveform Active LED's: Channel 1: ON when Channel 1 is turned on; Chan 2: ON when Channel 2 is turned on.

GPIB: Talk LED - ON when the instrument is in the talk mode.

> Listen LED - ON when the instrument is in the listen mode.

SRQ LED - ON when the SRQ line is asserted and the instrument is awaiting action from a GPIB controller.

Remote - This word is spelled out in the hand-held control panel display whenever the instrument is put into remote by a GPIB controller.

Indicators

Local LED - Indicates when the instrument is in the LOCAL mode and the hand-held control panel is operative. When it is not ON, the instrument is in the GPIB remote state.

Self Test LED - ON when a self test or calibrate is in progress

Test Fault LED - Flashes for 10 seconds when a self test or calibrate determines there is a fault or steady ON in the event of a microprocessor failure.

Battery Low LED – ON when the RAM Disk memory back-up battery is too low.

Channel 1, Invert LED - ON when Ch 1 output is inverted.

Channel 2, Invert LED - ON when Ch 2 output is inverted.

Rear Panel Connectors and Switches

Connectors: GPIB: IEEE 488-1978 compatible; RS-232 Port: DB 25 S Power Connector

Switches: GPIB Address Switch; RS-232 Port Configuration Switch, Line voltage selector and fuses

Waveform Creation and Editing

LeCroy's EASYWAVE® software package is available for PC-DOS compatible computers\*. It provides for waveform creation and editing in a menu driven environment. Waveform creation can be accomplished by any of the following methods:

- 1. Equation entry
- 2. Selecting and combining simple waveform elements.
- 3. Waveforms can be acquired over the GPIB from the LeCroy 9400 Series Digital Oscilloscopes and then edited.

Editing may be accomplished as follows:

- 1. Modifying individual points from the keyboard.
- 2. Modifying the equation describing the waveform.
- 3. Deleting, moving and rescaling blocks of data.
- \* Minimum hardware configuration of host computer 640K RAM, 10 Mbyte Hard Disk, Graphics (CGA, HGA, or EGA) Display and National Instruments PC2A GPIB Interface Card.

Other GPIB Compatible Controllers: Waveforms can be created and edited on other controllers using user supplied software.

#### **Instrument Control**

PC-DOS Compatibles: The same software package used for waveform editing also can be used for controlling the 9112.

Local Control Panel: Once the waveforms have been loaded to RAM Disk, an optional, detachable control panel with a four line LCD display may be used for controlling the 9112.

Other GPIB or RS-232 Compatible Controllers: Other computers or terminals may be used to control the instrument using the remote commands.

#### General

GPIB Interface Functions: IEEE 488-1978 compatible. SH1, AH1, T5, TE0, L3, LE0, SR1, RL1, PP0, DC1, DT1, C0

GPIB DMA Rates: Typically >200 kbytes/sec

RS-232C: Implemented as data communications Equipment (DCE)

Baud Rates: 300, 600, 1200, 2400, 4800, and 9600.

Data Bits: 7 or 8. Stop Bits: 1 or 2.

Parity: None, Even, or Odd.

Protocol: Full Duplex, Xon/Xoff (DC1/DC3) handshake.

Data Formats: #I Arbitrary length ASCII #L ASCII HEX "00" to "FF" (double the length of internally stored binary data files)

Commands: Full Conversational same as GPIB plus: RS\_SRQ, Define character equivalent to SRQ in GPIB. Default is "Bell", ESC commands ECHO on/off Trig remote/local

Temperature Range: 15° C. to 35° C., full specification; 0° C. to 40° C., operating

Humidity: 40° C., 10% to 95% relative, non-condensing.

Power: 115/220 + -20% VAC, 47-63 Hz. approximately

147 watts

Size: 5-1/4" H X 19" W X 15" D.

Weight: 26 lbs. (approximately)

## Standard Accessories

1 each Operator's Manual

1 each 36 MHz Low-Pass Output Filter

## Ordering Information

9112 Arbitrary Function Generator

| Optional Accessories | 9100/CP       | Detachable Hand-held Control Panel          |
|----------------------|---------------|---------------------------------------------|
| -                    | 9100/EC       | 6' Extender Cable (Control Panel)           |
|                      | 9112/OM       | Operator's Manual                           |
|                      | 9112/SM       | Service Manual                              |
|                      | 9100/SW       | EASYWAVE Software                           |
|                      | 9100 GPIB2    | GPIB interface card and software (National  |
|                      |               | Instruments PCII Card and GPIB-PC Software) |
|                      | DC/GPIB2      | GPIB Cable, 2 meters                        |
|                      | Filter/36 MHz | Additional 36 MHz Low-Pass Output Filter    |

EASYWAVE® is a registered trademark of LeCroy Corp IBMXT/AT® is a registered trademark of International Business Machines Corp.