The Model 2810 RF Vector Signal Analyzer combines complex signal analysis capabilities with high performance and unprecedented ease of use. It's designed to address a wide range of measurement needs for wireless devices, wireless transceiver modules, and RF components. In production testing applications, the Model 2810’s fast frequency tuning, rapid attenuator switching, and high speed digital signal processing reduce test time significantly, which helps to minimize overall testing costs. Its compact, half-rack enclosure conserves rack space, which is always at a premium in production test environments. Research and development engineers will appreciate how the Model 2810’s fast sweep times with narrow resolution bandwidths over wide frequency spans allow them to obtain the maximum information from a spectrum for characterization and analysis. A highly intuitive graphical user interface and simple operation allow even occasional users to make measurements with the Model 2810 with confidence.

- Continuous frequency range of 400MHz–2.5GHz spans key mobile wireless frequency bands
- Intuitive, easy-to-use graphical user interface
- >30MHz modulation measurement bandwidth for capturing signals based on the latest high bandwidth wireless standards
- Signal analysis options for all worldwide mobile phone standards: GSM/GPRS/EDGE, cdma2000 1xRTT, and WCDMA
- Excellent channel power accuracy (±0.6dB) for modulated mobile phone signals
- Fast sweep times: A fifteen-second sweep can display 200MHz of a signal’s spectrum with a 100Hz resolution bandwidth
- Built-in, fixed-output variable frequency generator
- Half-rack, 3U enclosure fits easily into both rack and bench-top systems
- Remotely controllable via Ethernet, USB, and GPIB interfaces
- LXI Class C compliant
- Readily updatable software-defined radio architecture
- 3-year standard warranty

APPLICATIONS
- Mobile handset production test
- Handset R&D and design verification
- Testing mobile communications infrastructure
- RFIC testing
- Wireless connectivity testing (802.11b/g WLAN, Bluetooth)
- Research and education in mobile communications

www.keithley.com

1.888.KEITHLEY (U.S. only)

Ideal companion for the Model 2910 Vector Signal Generator for telecom device testing
RF Vector Signal Analyzer

The Model 2810’s 400MHz — 2 GHz frequency range covers the mobile wireless frequency bands where extensive product innovation is continually occurring. Optional signal analysis formats support power calibration and modulation quality analysis for the major worldwide mobile phone standards. The Model 2810 can test and analyze signals from GSM, GPRS, EDGE, cdma2000, and WCDMA mobile phones.

With greater than 30MHz of signal acquisition bandwidth, the Model 2810 can acquire any of the current wireless signals in one sweep, as well as signals from the wireless standards now being developed. Its large built-in memory is capable of storing up to 50 mega-samples of down-converted I and Q pairs for either internal or external modulation analysis.

The instrument’s flexible, software-defined radio architecture gives telecommunications device manufacturers the testing flexibility they need to keep pace with constantly changing wireless technologies. Ongoing firmware updates make it easy and economical to incorporate new modulation analysis schemes and new measurement algorithms into the Model 2810 as needed.

Multiple Personalities

Three un-cost-able analysis options for the Model 2810 are available for use in testing mobile phone handsets based on a variety of technologies. These analysis “personalities” are provided as firmware modules that can quickly and cost-effectively tailor and/or update the Model 2810’s operation.

The Model 2810-GSM GSM/GPRS/EDGE Signal Analysis Personality measures all the key modulation quality parameters needed to assess the performance of a GSM/GPRS/EDGE transmitter: channel power, frequency error, phase error, time mask conformance, the Output RF Spectrum due to Modulation, and the Output RF Spectrum due to Switching. For testing EDGE transmitters, the Model 2810-GSM option also measures Error Vector Magnitude (EVM) and related parameters.

The Model 2810-cdma2000 Reverse Link Signal Analysis Personality analyzes 1.23MHz spread spectrum CDMA reverse link signals with measurements of channel power, frequency error, rho (\(\rho\)), adjacent channel power, code domain power, occupied bandwidth, and spurious emissions conformance.

The Model 2810-WCDMA Uplink Signal Analysis Personality tests WCDMA transmitters with measurements similar to the cdma2000 modulation quality measurements. Rather than rho and code.
domain power, the Model 2810/WCDMA option measures EVM and peak code domain error on a 3.84MHz WCDMA transmitter signal.

To minimize test time and maximize throughput in production testing, the analysis options compute multiple measurements with only a single acquisition of data. Furthermore, these signal analysis options are portable, so the license for any option can be transferred from one Model 2810 to another. This licensing flexibility helps reduce capital costs because it’s no longer necessary for manufacturers to order all their instruments “fully loaded” with options in order to be prepared for every testing possibility. Options can be transferred from Model 2810s on one production line to other instruments on another production line, so manufacturers can quickly respond to changes in capacity requirements and device type. Options can be transferred between instruments over a LAN network in minutes, so it’s easy to modify the test capabilities of production lines quickly.

Optimized for High Speed Testing

For making high speed measurements, the Model 2810 has a powerful digital processing engine, which substantially reduces test times and the cost of test. Conventional spectrum analyzers aren’t able to match in ability to acquire wide segments of a signal’s spectrum with high resolution. For example, while a Model 2810 can sweep a frequency band that’s 200MHz wide using a 100Hz resolution bandwidth in just fifteen seconds, conventional sweeping spectrum analyzers can take a thousand times longer to perform the same task. Solid-state variable attenuators allow the Model 2810 to change reference levels quickly. It can also tune to any frequency in less than 3ms. These speeds make it possible to perform a set of GM8 or EIGE measurements in approximately 27 milliseconds.

High Speed RF Component Testing

When used in combination with the Model 2910 RF Vector Signal Generator, the Model 2810 can reduce both test times and capital equipment costs for testing active and passive RF components. Unlike time-consuming instruments that require issuing a separate command for each instruction, both the Models 2810 and 2910 are supported by powerful bus commands that allow generating multiple signals at different frequencies and taking multiple measurements at different frequencies. The Model 2910 can decompose a modulated signal into the I and Q samples that created the signal, while the Model 2910 can generate modulated waveforms. This economical, two-instrument configuration can analyze the magnitude of modulation distortion created by a component, making it possible to estimate or model the performance of the component in a modulating circuit.

A TTL signal output provided by the Model 2910 indicates when the generator’s output has settled, eliminating the need to program time-consuming delay states into the Model 2810 to ensure the source signal has settled sufficiently before analysis begins. Both instruments have TTL trigger inputs and synchronization outputs to communicate with each other directly and control the test protocol. This direct communications bypasses the much slower control process of using individual PC commands to control every aspect of the test.

Compact System for Transceiver Testing

Combine the Model 2810 and the Model 2910 Vector Signal Generator with an RF coupled, single-connection interface to a transceiver to perform high speed transmitter and receiver calibration and testing. With fast frequency tuning and fast amplitude switching times, the transmitter and receiver circuits can be quickly calibrated over multiple operating bands—the response of the device under test becomes the limiting factor due to instrument state changes. A test system configured with the Models 2810, 2910, and a 3.84MHz RF single-connection interface minimizes both equipment costs and rack space, requiring just 4U of rack height.

Easy to Configure, Easy to Use

A variety of features simplify configuring and operating Model 2810-based RF test systems:

- **Intuitive GUI**: The Model 2810's simple, touch-screen graphical user interface makes it ideal for use by both experienced RF test engineers and novices, including students.

- **Compact size**: At just 3U (5.25 inches) high and half the width of a 19-inch rack, the Model 2810 fits equally well in a test rack or on a benchtop. Its compact enclosure makes it easy to pair with other half-rack RF instruments, such as the Model 2910, for maximum testing capability in minimal space.

- **Choice of remote programming interfaces**: The Model 2810's built-in 100Base-T Ethernet and USB interfaces allow direct, high speed programming and command transfer to the system controller. A GPIB interface makes it adaptable for use in legacy environments.

- **Built-in generator**: A variable frequency RF source output is built into the Model 2810 for use as a system self-test signal, as a test stimulus signal, or as a local oscillator drive for an external mixer.

- **Flexible software tools**: The collection of software tools included was selected to help speed and simplify development of remote control software applications. Programmers have the flexibility to develop applications directly in SCPI, employ VISA drivers, or use a LabVIEW™ driver.

- **1XI Class Compliance**: The Model 2810 supports the physical, programmatic, LAN, and Web portions of the emerging LAN eXtensions for Instrumentation (1XI) standard. The instrument can be monitored and controlled from any location on the LAN network via its 1XI web page.

- **Graphical Help system**: The Model 2810’s Help system provides comprehensive and easy-to-use documentation that’s accessible via the GUI and remotely, so users can refer to it while working directly with the instrument or while working at their desks on their PCs.

Keithley’s Growing RF Line

The Model 2810 is the latest addition to our expanding RF wireless test offering, which provides a complete line of RF sourcing, measurement, and signal routing capabilities. In addition, Keithley services many phases within the wireless industry, starting with our automated DC/RF parametric test systems for wafer-level testing. Component manufacturers often choose Series 2400 and 2600 SourceMeter® instruments for high speed DC testing of packaged parts like RFICs. Keithley’s high speed power supplies and battery charger simulators are widely used in board-level, wireless handset testing, and our THD Multimeters and Audio Analyzing DMMs are popular choices for audio test systems. We also offer an array of RF microwave signal routing solutions, ranging from stand-alone switches and simple plug-in modules to large, high density solutions designed for production test applications.
The combination of the Model 2810 and the Model 2910 Vector Signal Generator with the triggering and test script control of the Model 2602 System SourceMeter® instruments allows for simultaneous measurements of RF power and DC load currents. In addition, the Model 2810 and the Model 2910 can perform high speed measurements of modulation performance on the device under test.
Model 2810 Specifications

RF/MICROWAVE SWITCH & INST.

www.keithley.com
1.888.KEITHLEY (U.S. only)

A GREATER MEASURE OF CONFIDENCE

2810 RF Vector Signal Analyzer

BASIC MODES OF OPERATION

SPECTRUM ANALYZER MODE: Power envelope amplitude vs. frequency spectrum, power envelope amplitude vs. time (zero span), and adjacent channel power bar chart.

VECTOR SIGNAL ANALYSIS MODE: Modulation quality measurements on GSM, GPRS, EDGE, cdma2000, and WCDMA mobile phone transmitter signals.

1.888.KEITHLEY (U.S. only)

Model 2810 rear panel.

www.keithley.com

SPECTRUM ANALYSIS CONTROLS AND PARAMETERS

FREQUENCY

1. FREQUENCY RANGE: 400MHz to 2.5GHz.

2. FREQUENCY SETTLE RESOLUTION: 0.1Hz.

3. FREQUENCY ACCURACY: Same as frequency reference + synthesizer resolution term.

INTERNAL FREQUENCY REFERENCE

1. AGING RATE: ≤ 1ppm/year.

2. TEMPERATURE STABILITY: ≤ 0.2ppm/year.

FREQUENCY REFERENCE OUTPUT

1. IMPEDANCE: 50Ω (characteristic), AC coupled.

REF OUTPUT SIGNAL: 10MHz, +7dBm ±3dB (characteristic).

EXTERNAL FREQUENCY REFERENCE INPUT

1. FREQUENCY RANGE: 1 to 20MHz.

2. AMPLITUDE: Lock Range: 0 to +15dBm.

3. IMPEDANCE: 50Ω (characteristic).

SPECTRUM ANALYSIS CONTROLS AND PARAMETERS

FREQUENCY SPAN: 200Hz to 2.1GHz. Zero Span mode available.

SWEEP TIME SETTINGS IN ZERO SPAN MODE: 1µs to 0.5s.

SWEEP MODES: Continuous, Single.

IF BANDWIDTH:

1. Relative Flatness over 20MHz: ±1.0dB (typical).

2. Relative Flatness over 4MHz: ± 0.3dB (typical).

3. 3dB BW: >30MHz.

RESOLUTION BANDWIDTHS:

1. ENBW: 2Hz to 3MHz.

2. Resolution Bandwidth Filters (1Hz resolution): Brickwall: 10Hz to 35MHz, flat BW.

3. Root Raised Cosine: α = 0.22: 10Hz to 28MHz, 3dB BW.

4. Gaussian: 10Hz to 7MHz, 3dB BW.

5. 5 pole Synchronously Tuned: 10Hz to 2.3MHz, 3dB BW.

6. 4 pole Synchronously Tuned: 10Hz to 1.75MHz, 3dB BW.

AMPLITUDE

1. Reference Level Range Setting: +40dBm to –170dBm.

2. Scale Settings: Manual: 0.1dB/division to 40dB/division.

PRE-AMPLIFIER (15dB gain characteristic): On, off.

DISPLAY

1. Detection modes: Normal, Maximum, Minimum, Sample, Power Average, Power Average + Noise Correction.

2. Trace Hold Displays: Normal, Max Hold, Min Hold, Max/Min Hold.

3. AVERAGING: 1–2500 traces. Modes: Log, Power, Log Group, Power Group, Max Group, Min Group, Max/Min Group.

MARKERS: Four independent markers, each with a delta marker, Normal and Peak modes.

Marker Amplitude Resolution: 0.01dB from front panel; 0.001dB via remote interface.

CHANNEL POWER LIST: Single command to execute up to 501 power measurements.

AMPLITUDE

1. MAXIMUM SAFE INPUT POWER: +35dBm.

2. MAXIMUM SAFE DC VOLTAGE: ±50VDC.

3. ABSOLUTE ACCURACY:

- 400MHz ≤ Freq ≤ 2,000MHz ±0.6dB ±0.3dB
- 2,000MHz < Freq ≤ 2,500MHz ±0.7dB ±0.4dB

4. REF LEVEL ACCURACY (referenced to 0dBm): Reference Level Setting Accuracy:

- +10 to –70dBm ±0.2dB
- –70 to –90dBm ±0.4dB
- –90 to –100dBm ±1.0dB

DISPLAY SCALE FIDELITY: ±0.16dB.

RESOLUTION BANDWIDTH SWITCHING ERROR: ±0.01dB.

ATTENUATOR ACCURACY:

- ±0.50dB for 0 through 15dB attenuator settings.

- ±0.25dB for 20 and 25dB attenuator settings.

- ±0.25dB for 30dB attenuator setting.

AMPLITUDE REPEATABILITY: ±0.20dB, ±0.14dB typical.

AMPLITUDE CHANGE DUE TO PREAMP ON: ±0.3dB, ±0.18dB (typical).

DISPLAYED AVERAGE NOISE LEVEL: –141dBm/Hz, pre-amp off. –148dBm/Hz, pre-amp on.

VSWR: 1.4:1

SPURIOUS AND RESIDUAL RESPONSES:

TOI (referred to the 2810 input, two 0dBm input signals and reference level = 0dBm): +30dBm (typical).

SOI (referred to the 2810 input, 0dBm input signals and reference level = 0dBm): +50dBm (typical).

Residuals (reference level setting ≤ –40dBm): ≤ –90dBm.

LO Spurs: ≤ –55dBc.

Phase Noise (1GHz carrier frequency and 20kHz offset frequency): ≤ –115dBc/Hz.

GENERATOR OUTPUT

FREQUENCY RANGE: 400MHz to 2.5GHz.

SWEEP SPAN: 0Hz to 2.1GHz.

SWEEP POINTS: 1 to 501.

DWELL SETTING: 1ms to 1s in 1ms increments.

AMPLITUDE:

- Fixed: –10dBm ±3.5dB (typical: ±3dB).

DATA TRANSFER RATES

REMOTE TRACE DATA TRANSFER:

- LAN: 7.6ks.

- USB: 12.7ms.

- GPIB: 20ms.

MODEL 2810 SPECIFICATIONS

1.888.KEITHLEY (U.S. only)

www.keithley.com
2810-GSM GSM/GPRS/EDGE SIGNAL ANALYSIS PERSONALITY

OUTPUT RF SPECTRUM
- Frequency Accuracy: ±0.5kHz (typical).
- Dynamic Range: 65dBc @ 885kHz offset (typical).
- Spurious Emissions: <1.5dB (characteristic).
- Power: ±0.3dB.

CHANNEL POWER
- Measurement Range: ±5dBm to +5dBm (typical).
- Accuracy: ±1.6dB (typical).

FREQUENCY ERROR
- Frequency Error Measurement Range: ±5kHz (typical).
- Frequency Error Accuracy: ±0.001% (typical).
- ΔFΔt Measurement: ±0.005 (for ρ > 0.9).
- ΔFΔt Ceiling: ±0.5%.

CODE DOMAIN POWER
- Relative accuracy for code channels >20dB of total power: ±0.5dB (typical).

DISPLAYS
- Code Domain Power, Adjacent Channel Power with limits.
- Occupied Bandwidth with limit lines.
- Spurious Emissions with limits.

ADJACENT CHANNEL POWER
- Dynamic Range: ±3dB to ±80dBm relative to other (typical).
- Relative Accuracy: ±0.5dB.

OCCUPIED BANDWIDTH
- Frequency Accuracy: ±0.5dB (typical).

SPECTRUM EMISSIONS MASK
- Accuracy relative to carrier power: ±0.5dB.

DISPLAYS
- Code Domain Power, Adjacent Channel Power with limits.
- Occupied Bandwidth with limit lines.
- Spurious Emissions with limits.

2810-CDMA2000 CDMA2000 REVERSE LINK SIGNAL ANALYSIS PERSONALITY

CHANNEL POWER
- Measurement Range: ±5dBm to +5dBm (typical).
- Accuracy: ±1.6dB (typical).

FREQUENCY ERROR
- Frequency Error Measurement Range: ±5kHz (typical).
- Frequency Error Accuracy: ±0.001% (typical).
- ΔFΔt Measurement: ±0.005 (for ρ > 0.9).
- ΔFΔt Ceiling: ±0.5%.

CODE DOMAIN POWER
- Relative accuracy for code channels >20dB of total power: ±0.5dB (typical).

DISPLAYS
- Code Domain Power, Adjacent Channel Power with limits.
- Occupied Bandwidth with limit lines.
- Spurious Emissions with limits.

ADJACENT CHANNEL POWER
- Dynamic Range: ±3dB to ±80dBm relative to other (typical).
- Relative Accuracy: ±0.5dB.

OCCUPIED BANDWIDTH
- Frequency Accuracy: ±0.5dB (typical).

SPECTRUM EMISSIONS MASK
- Accuracy relative to carrier power: ±0.5dB.

DISPLAYS
- Code Domain Power, Adjacent Channel Power with limits.
- Occupied Bandwidth with limit lines.
- Spurious Emissions with limits.
SPECIFICATION NOTES:
Specifications describe the instrument’s warranted performance. Typical and characteristic values are not warranted, but provide additional information regarding performance that you should expect for Model 2810 and are provided to assist in application of the Model 2810.

SPECIFICATIONS (warranted performance):
Specifications indicate performance that is warranted. All units are warranted to meet these performance specifications under the following conditions:

- Ambient operating temperature of 23°C, unless otherwise noted.
- After specified warm-up time of 30 minutes and self calibration at ambient temperature.

TYPICAL (mean ± 3 standard deviations):
Gaussian indicates performance that units will meet under the following conditions:

- Ambient operating temperature of 23°C, unless otherwise noted.
- After specified warm-up time of 30 minutes and self calibration at ambient temperature.

NOTES:
- This performance is warranted. (TTL) does not include level uncertainty due to inherent noise.
- Signal level within ±50dB of top of screen, reference level 0dBm, no change in instrument state.
- Sensitivity to input level: For values: ≤0.1dB change in instrument state.
- Sensitivity to input level: >0.1dB change in instrument state.
- Sensitivity to input level: ±1ppm. Sine or square wave inputs acceptable.
- Sensitivity to input level: 100VAC to 240VAC; 50/60Hz (automatically detected); 120VAC max. Includes power factor correction.
- Sensitivity to input level: EN 61010-1.
- Sensitivity to input level: 100VAC to 240VAC; 50/60Hz (automatically detected); 120VAC max. Includes power factor correction.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
- Sensitivity to input level: CE; Safety according to IEC 61010-1; MIL-PRF-2880 CL3 random vibration, 3 axes.
RF Vector Signal Analyzer

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.