Series 2600A System SourceMeter instruments are Keithley’s latest I-V source-measure instruments for use as either bench-top I-V characterization tools or as building block components of multi-channel I-V test systems. For bench-top use, Series 2600A instruments feature an embedded TSP Express Software Tool that allows users to quickly and easily perform common I-V tests without programming or installing software. For system level applications, Series 2600A’s Test Script Processor (TSP) architecture along with other new capabilities such as parallel test execution and precision timing provides the highest throughput in the industry, lowering the cost of test. To simplify the testing, verification, and analysis of semiconductor components, the optional ACS Basic Edition software is also available.

Series 2600A System SourceMeter instruments replace the popular Series 2600 System SourceMeter instruments with a superset of features. 2600A instruments readily execute all 2600 commands.
Simplify Semiconductor Component Test, Verification, and Analysis

The optional ACS Basic Edition software maximizes the productivity of customers who perform packaged part characterization during development, quality verification, or failure analysis, with:

- Rich set of easy-to-access test libraries
- Script editor for fast customization of existing tests
- Data tool for comparing results quickly
- Formulator tool that analyzes captured curves and provides a wide range of math functions

For more information about the ACS Basic Edition software, please refer to the ACS Basic Edition data sheet.

Unmatched Throughput and Flexibility for High Performance I-V Test Systems

TSP technology provides remarkable capabilities when a Series 2600A is integrated as part of a multi-channel I-V test system. For example, the embedded scripting capability allows test scripts to be run by the instrument. Test scripts are complete test programs based on an easy to use but highly efficient and compact scripting language called Lua (www.lua.org). Since test scripts can contain any sequence of routines that are executable by conventional programming languages (including decision making algorithms), this feature allows entire tests to be managed by the instrument without sending readings back to a PC for decision making. This eliminates the delays caused by GPIB traffic congestion and greatly improves overall test times.

Also, TSP technology offers “mainframe-less channel expansion.” The TSP-Link channel expansion bus (which uses a 100 Base T Ethernet cable) allows multiple Series 2600A and other TSP instruments to be connected in a master-slave configuration and behave as one integrated system. TSP-Link supports up to 32 units or 64 SMU channels per GPIB or IP address, making it easy to scale a system to fit the particular requirements of an application.

Parallel Test Capability

The Series 2600A takes system level performance to a new height with parallel testing capability. This feature tests multiple devices in parallel to meet the high throughput requirements of production test and advanced semiconductor lab applications.

This parallel testing capability enables each instrument in the system to run its own complete test sequence, creating a fully multi-threaded test environment. Hence, the number of tests that can be running in parallel on a Series 2600A system can be as many as the number of instruments in the system. In contrast, most conventional test systems run a single thread test, usually on the controller PC instead of the instrument itself. Testing multiple devices at the same time means dramatically improved test throughput and reduced overall cost of test.

When all or some of your test requirements change, your Series 2600A system can be reconfigured via software without rewiring. The internal software can match the different pin layouts of the devices-under-test to the appropriate SMU-per-pin configurations.

Tight Timing and Synchronization

Today’s test engineers are challenged with testing increasingly more complex and more sensitive devices that require precise timing and synchronization. Whether you need to synchronize electrical and optical tests for an

Parallel testing with the Series 2600A

1.888.KEITHLEY (U.S. only) www.keithley.com
Series 2600A

Ordering Information

2601A Single-channel System SourceMeter Instrument (3A DC, 10A Pulse)
2602A Dual-channel System SourceMeter Instrument (3A DC, 10A Pulse)
2611A Single-channel System SourceMeter Instrument (200V, 10A Pulse)
2612A Dual-channel System SourceMeter Instrument (200V, 10A Pulse)
2635A Single-channel System SourceMeter Instrument (1fA, 10A Pulse)
2636A Dual-channel System SourceMeter Instrument (1fA, 10A Pulse)

Accessories Supplied

2600-ALG-2 Low Noise Triax Cable with Alligator Clips, 2m (6.6 ft.) (two supplied with 2636A, one with 2635A)
2600-IAC Safety Interlock Adapter Connector (one supplied with 2611A/2612A and 2635A/2636A)
2600-Kit Mating Screw Terminal Connectors with strain relief and covers (2601A/2602A/2611A/2612A)
CA-180-3A TSP-Link/Ethernet Cable (two per unit)
TSP Express Software Tool (embedded)
Test Script Builder Software (supplied on CD)
ACS Basic Edition Software (optional)

System SourceMeter® Instruments

A greater measure of confidence

Optoelectronic component or ensure that the same stress times are applied to the different pins of an advanced semiconductor device, providing precision timing and synchronization between SMU channels (and external instruments) has become a critical requirement.

A high performance trigger model that is hardware driven allows timing at each source-measure step to be tightly controlled. It also synchronizes the operations between SMU channels and/or external instrumentation at hardware speeds of <500ns.

Third-generation SMU Design Ensures Faster Test Times

Based on the proven architecture of earlier Series 2600 instruments, the Series 2600A's new SMU design enhances test speed in several ways. For example, while earlier designs used a parallel current ranging topology, the Series 2600A uses a patented series ranging topology, which provides faster and smoother range changes and outputs that settle more quickly.

The Series 2600A SMU design supports two modes of operation for use with a variety of loads. In normal mode, the SMU provides high bandwidth performance for maximum throughput. In high capacitance (high-C) mode, the SMU uses a slower bandwidth to provide robust performance with higher capacitive loads.

Each Series 2600A SMU channel offers a highly flexible, four-quadrant source coupled with precision voltage and current meters. Each channel can be configured as:

- Precision power supply
- True current source
- DMM (DCV, DCl, ohms, and power with 5½-digit resolution)
- Electronic load (with sink mode capability)
- V or I pulse generator (Pulse width: 100µs and longer)
- V or I waveform generator

All analog-to-digital (A/D) converters in Series 2600A instruments are both high speed and high precision for maximum flexibility. The two A/D converters per channel (one for I, one for V) can run simultaneously, providing precise source-readback without sacrificing test throughput. These A/D converters offer the versatility of programmable integration rates, allowing you to optimize for either high speed (>20,000 rdgs/s at 0.001 NPLC setting) or for high resolution (up to 24 bits at 10 NPLC setting) measurements.

Digital IO Interface

A back panel port on every Series 2600A instrument provides 14 bits of universal digital IO to link the instrument to a variety of popular component handlers and/or probe stations. These digital IO lines are compatible with the triggering technology of Keithley’s earlier Trigger-Link instruments. These lines simplify integrating Series 2600A instruments into systems that employ other electrical, mechanical, optical, or RF equipment.

TSP-Link Trigger Lines

The TSP-Link bus supports dedicated trigger lines that provide synchronous operations between multiple Series 2600A instruments (and other TSP instruments, such as Series 3700 DMM/Switch Systems) without the need for additional trigger connections.

Built-in Contact Check Function

The Contact Check function makes it simple to verify good device-under-test connections quickly and easily before an automated test sequence begins. This eliminates the measurement errors and false product failures associated with contact fatigue, breakage, contamination, loose or broken connections, relay failures, etc.
Series 2600A

System SourceMeter® Instruments

Powerful Software Tools
In addition to the embedded TSP Express and optional ACS Basic Edition software, the free Test Script Builder software tool is provided to help users create, modify, debug, and store TSP test scripts. Table 1 describes key features of Series 2600A software tools.

Complete Automated System Solutions
While the ACS Basic Edition software only supports component characterization tests, wafer and cassette level testing can be performed by Keithley’s ACS Integrated Test Systems. ACS systems are highly configurable, instrument-based systems that generally include a number of Series 2600A instruments. These systems are designed for semiconductor device characterization, reliability/WLR, parametric, and component functional testing.

The flexible software architecture of ACS Basic Edition allows configuring systems with a wide range of controllers and test fixtures, as well as the exact number of SourceMeter instruments the application requires.

Table 1. Series 2600A software tools

<table>
<thead>
<tr>
<th>Feature/Functionality</th>
<th>ACS Basic Edition</th>
<th>TSP Express</th>
<th>Test Script Builder (TSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Semiconductor characterization software for component test, verification, and analysis</td>
<td>Quick Start Tool for fast and easy I-V testing, primarily for bench and lab users</td>
<td>Custom script writing tool for TSP instruments</td>
</tr>
<tr>
<td>Supported hardware</td>
<td>24xx, 26xx, 26xxA, 4200-SCS, 237</td>
<td>26xxA</td>
<td>26xx, 26xxA, 37xx</td>
</tr>
<tr>
<td>Supported buses</td>
<td>GPIB, Ethernet</td>
<td>Ethernet only</td>
<td>GPIB, RS-232, Ethernet</td>
</tr>
<tr>
<td>Functionality</td>
<td>Intuitive, wizard-based GUI, Rich set of test libraries</td>
<td>Linear/Log Sweeps, Pulsing, Custom sweeps, Single point source-measures. Note: Uses new 2600A's new API's for precision timing and channel synchronization</td>
<td>Custom scripts with total flexibility</td>
</tr>
<tr>
<td>Data management</td>
<td>Formulator tool with wide range of math functions</td>
<td>.csv export, basic curve tracing (no math formula or analysis support)</td>
<td>N/A</td>
</tr>
<tr>
<td>Installation</td>
<td>Optional purchase</td>
<td>Not necessary. Embedded in the instrument</td>
<td>Free Download or CD Install on PC.</td>
</tr>
</tbody>
</table>
In the first and third quadrants, Series 2600A instruments operate as a source, delivering power to a load. In the second and fourth quadrants, they operate as a sink, dissipating power internally.

ACCESSORIES AVAILABLE

CABLES AND CONNECTORS
- 2600-BAN: Banana Test Leads/Adapter Cable. For a single 2601A/2602A/2611A/2612A SMU channel
- 2600-KIT: Extra screw terminal connector, strain relief, and cover for a single SourceMeter channel (one supplied with 2601A/2611A, two with 2602A/2612A)
- 2600-TRIAX: Triax Adapter. For a single 2601A/2602A/2611A/2612A SMU channel
- 7078-TRX-5: 3-Slot, Low Noise Triax Cable. For use with 2600-TRIAX Adapter
- 7078-TRX-GND: 3-Slot male triax to BNC adapter (guard removed)
- 8606: High Performance Modular Probe Kit. For use with 2600A-BAN
- SC-200: Shielded Twisted Pair Cable. Recommended for general-purpose use with Series 2600A System SourceMeter instruments
- 2600-IAC: Safety Interlock Adapter Connector (one supplied with 2611A/2612A/2635A/2636A)

DIGITAL I/O, TRIGGER LINK, AND TSP-LINK
- 2600-TLINK: Digital I/O to TLINK Adapter Cable, 1m
- CA-126-1: Digital I/O and Trigger Cable, 1.5m
- CA-180-3A: CAT5 Crossover Cable for TSP-Link and direct Ethernet connection (two supplied)

GPIB INTERFACES AND CABLES
- 7007-1: Double Shielded GPIB Cable, 1m (3.3 ft.)
- 7007-2: Double Shielded GPIB Cable, 2m (6.6 ft.)
- KP91-488LP: IEEE-488 Interface for the PCI Bus
- KP94-488: IEEE-488 Interface Board for the PXI Bus
- KUSB-488B: IEEE-488 USB-to-GPIB Interface Adapter

SWITCHING
- Series 5700: DMM/Switch Systems
- 707A: Semiconductor Switching Matrix Mainframe
- 7001: Switch Control Mainframe

RACK MOUNT KITS
- 4299-1: Single Rack Mount Kit with front and rear support
- 4299-2: Dual Rack Mount Kit with front and rear support
- 4299-5: 1U Vent Panel

SOFTWARE
- ACS-BASIC: Component Characterization Software

EXTENDED WARRANTIES
- 2601A-EW: 1 Year Extended Warranty for Model 2601A
- 2602A-EW: 1 Year Extended Warranty for Model 2602A
- 2611A-EW: 1 Year Extended Warranty for Model 2611A
- 2612A-EW: 1 Year Extended Warranty for Model 2612A
- 2635A-EW: 1 Year Extended Warranty for Model 2635A
- 2636A-EW: 1 Year Extended Warranty for Model 2636A

CALIBRATION AND VERIFICATION
- 2600-STD-RES: Calibration Standard 1kΩ Resistance for Models 2635A and 2636A

Model 2602A/2612A rear panel
(Single channels 2601A, 2611A, 2635A not shown)

Model 2636A rear panel
SPECIFICATION CONDITIONS

This document contains specifications and supplemental information for the Models 2601A and 2602A System SourceMeter® instruments. Specifications are the standards against which the Models 2601A and 2602A are tested. Upon leaving the factory, the 2601A and 2602A meet these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information.

Accuracy specifications are applicable for both normal and high capacitance modes. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2601A and 2602A) or SourceMeter CHANNEL B (2602A) terminals under the following conditions:

1. 23°C ± 5°C, <70% relative humidity
2. After 2 hour warm-up
3. Speed normal (1 NPLC)
4. A/D auto-zero enabled
5. Remote sense operation or properly zeroed local operation
6. Calibration period = 1 year

SOURCE SPECIFICATIONS

VOLTAGE SOURCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Range</th>
<th>Programming Resolution</th>
<th>Accuracy (1 Year)</th>
<th>Typical Noise (peak-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Resolution</td>
<td>23°C ± 5°C</td>
<td>0.1Hz–10Hz</td>
</tr>
<tr>
<td>100.000 mV</td>
<td>5 µV</td>
<td>0.02% + 250 µV</td>
<td>20 µV</td>
</tr>
<tr>
<td>1.00000 V</td>
<td>50 µV</td>
<td>0.02% + 400 µV</td>
<td>50 µV</td>
</tr>
<tr>
<td>6.00000 V</td>
<td>50 µV</td>
<td>0.02% + 1.8 mV</td>
<td>100 µV</td>
</tr>
<tr>
<td>40.0000 V</td>
<td>500 µV</td>
<td>0.02% + 12 mV</td>
<td>500 µV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±0.15 x accuracy specification)/°C. Applicable for normal mode only. Not applicable for high capacitance mode.

VOLTAGE SOURCES:

- Maximum Output Power and Source/Sink Limits: ±40.4W per channel maximum. ±40.4W @ ±1.0A, ±6.06V @ ±3.0A, four quadrant source or sink operation.
- Bipolar voltage limit (compliance) set with a single value.
- Bipolar current limit (compliance) is set with a single value.
- A GREATER MEASURE OF CONFIDENCE

ADDITIONAL SOURCE SPECIFICATIONS

TRANSIENT RESPONSE TIME: <70µs for the output to recover to within 0.1% for a 10% to 90% step change in load.

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range.

- 100mV, 1V Ranges: <35µs typical.
- 40V Range ±10% of 40V ±150µs typical.

CURRENT SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for Iout × Rload = 4W.

- 3A Range: <80µs typical (current less than 2.5A, Rload >2Ω).
- 1A–10mA Ranges: <80µs typical (Rload >6Ω).
- 1mA Range: <100µs typical.
- 10µA Range: <500µs typical.
- 1µA Range: <2.5ms typical.
- 100nA Range: <25ms typical.

DC FLOATING VOLTAGE: Output can be floated up to ±250VDC from chassis ground.

REMOTE SOURCE OPERATING RANGE 4 H:

- Maximum voltage between HI and SENSE HI = 3V.
- Maximum voltage between LO and SENSE LO = 3V.

VOLTAGE OUTPUT HEADROOM:

- 40V Range: Max. output voltage = 42V – total voltage drop across source leads (maximum 1Ω per source lead).
- 6V Range: Max. output voltage = 8V – total voltage drop across source leads (maximum 1Ω per source lead).

OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode.

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT: <300mV ± 0.1% of larger range (typical). Overshoot into an 100Ω load, 20MHz BW.

CURRENT SOURCE RANGE CHANGE OVERSHOOT: <5% of larger range + 500mV/Rload (typical with source setting set to SETTLE_SMOOTH_100mA). See Current Source Output Settling Time for additional test conditions.

NOTES

1. Add 90µV to source accuracy specifications per volt of HI lead drop.
2. High Capacitance Mode accuracy is applicable at 25°C ±5°C only.
3. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode operation enabled.
5. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
6. 103 range accessible only in pulse mode.
7. High Capacitance Mode accuracy is applicable at 25°C ±5°C only.
8. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
9. For sink mode operation (quadrants II and IV), add 10% of compliance range and ±0.02% of limit setting to corresponding voltage source specification. For 100mA range add an additional 60mV of uncertainty.
10. Add 150µs when measuring on the 1A range.
11. Add 90µV to source accuracy specifications per volt of HI lead drop.
SOURCE AND MEASURE

SOURCE SPECIFICATIONS (continued)

PULSE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Region</th>
<th>Maximum Current Limit</th>
<th>Maximum Pulse Width</th>
<th>Maximum Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 A @ 40 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>3.0 A @ 6 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>1.5 A @ 35 V</td>
<td>100 ms</td>
<td>25%</td>
</tr>
<tr>
<td>4</td>
<td>10 A @ 20 V</td>
<td>1.8 ms</td>
<td>1%</td>
</tr>
</tbody>
</table>

MINIMUM PROGRAMMABLE PULSE WIDTH: 1µs, 100µA. NOTE: Minimum pulse width for settled source at a given I/V output and load can be longer than 100µs.

PULSE WIDTH PROGRAMMING ACCURACY: ±2µs.

PULSE WIDTH JITTER: 2µs (typical).

QUADRANT DIAGRAM:

![Quadrant Diagram](image-url)

NOTES

12. Times measured from the start of pulse to the start-off time; see figure below.

13. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the reference manual for more information.

14. Typical performance for minimum settled pulse width:

<table>
<thead>
<tr>
<th>Source Value</th>
<th>Load</th>
<th>Source Setting (% of range)</th>
<th>Min. Pulse Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 V</td>
<td>2 Ω</td>
<td>0%</td>
<td>350 µs</td>
</tr>
<tr>
<td>20 V</td>
<td>2 Ω</td>
<td>1%</td>
<td>200 µs</td>
</tr>
<tr>
<td>35 V</td>
<td>7 Ω</td>
<td>0.5%</td>
<td>500 µs</td>
</tr>
<tr>
<td>40 V</td>
<td>27 Ω</td>
<td>0.1%</td>
<td>400 µs</td>
</tr>
<tr>
<td>1.5 A</td>
<td>27 Ω</td>
<td>0.1%</td>
<td>15 ms</td>
</tr>
<tr>
<td>5 A</td>
<td>2 Ω</td>
<td>0.2%</td>
<td>150 µs</td>
</tr>
<tr>
<td>5 A</td>
<td>7 Ω</td>
<td>0.5%</td>
<td>500 µs</td>
</tr>
<tr>
<td>10 A</td>
<td>2 Ω</td>
<td>0.5%</td>
<td>200 µs</td>
</tr>
</tbody>
</table>

Typical tests were performed using remote operation, 4Ω sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600A Reference Manual.

15. Times measured from the start of pulse to the start-off time; see figure below.

METER SPECIFICATIONS

VOLTAGE MEASUREMENT ACCURACY: 16, 17

<table>
<thead>
<tr>
<th>Range</th>
<th>Display Resolution</th>
<th>Input Resistance</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.000 mV</td>
<td>1 µV</td>
<td>>10 GΩ</td>
<td>±(0.15 accuracy specification/°C)</td>
</tr>
<tr>
<td>1.00000 mA</td>
<td>10 µV</td>
<td>>100 GΩ</td>
<td>±<(0.15 accuracy specification + 1 µV)</td>
</tr>
<tr>
<td>10.0000 A</td>
<td>100 µV</td>
<td>>10 GΩ</td>
<td>±<(0.15 accuracy specification + 10 µV)</td>
</tr>
</tbody>
</table>

CURRENT MEASUREMENT ACCURACY: 18

<table>
<thead>
<tr>
<th>Range</th>
<th>Display Resolution</th>
<th>Voltage Burden</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.000 mV</td>
<td>1 µV</td>
<td>>10 GΩ</td>
<td>±<(0.15 accuracy specification + 1 µV)</td>
</tr>
<tr>
<td>1.00000 mA</td>
<td>10 µV</td>
<td>>100 GΩ</td>
<td>±<(0.15 accuracy specification + 10 µV)</td>
</tr>
<tr>
<td>10.0000 A</td>
<td>100 µV</td>
<td>>10 GΩ</td>
<td>±<(0.15 accuracy specification + 100 µV)</td>
</tr>
</tbody>
</table>

ADDITIONAL METER SPECIFICATIONS

MAXIMUM LOAD IMPEDANCE:

Normal Mode: 100kΩ (typical). High Capacitance Mode: 500pF (typical).

COMMON MODE VOLTAGE: 250VDC.

COMMON MODE ISOLATION: >1GΩ, <4500pF.

OVER RANGE: 101% of source range, 102% of measure range.

MAXIMUM SENSE LEAD RESISTANCE: 1kΩ for rated accuracy.

SENSING IMPEDANCE: >10GΩ.

NOTES

16. Add 90µV to source accuracy specifications per volt of HI lead drop.

17. De-rate accuracy specifications for NPLC setting < 1 by increasing error term.

18. Applies when in single channel display mode.

19. High Capacitance Mode accuracy is applicable for 25°C ±5°C only.

20. Applies when in single channel display mode.

21. Four-wire remote sense only with current meter mode selected. Voltage measurement set to 100mV or 1V range only.

22. 10A range accessible only in pulse mode.

23. Compliance equal to 100mA.

24. High Capacitance Mode accuracy is applicable for 25°C ±5°C only.

25. Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances.

1.888.KEITHLEY (U.S. only)

www.keithley.com
2601A 2602A

System SourceMeter® Instruments

HIGH CAPACITANCE MODE

Voltage Source Output Settling Time: Time required to reach 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A.

<table>
<thead>
<tr>
<th>Voltage Source Range</th>
<th>Setting Time with $C_{load} = 4.7\mu F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mV</td>
<td>200 µs (typical)</td>
</tr>
<tr>
<td>1 V</td>
<td>200 µs (typical)</td>
</tr>
<tr>
<td>6 V</td>
<td>200 µs (typical)</td>
</tr>
<tr>
<td>40 V</td>
<td>7 ms (typical)</td>
</tr>
</tbody>
</table>

Current Measure Setting Time: Time required to reach 0.1% of final value after voltage source is stabilized on a fixed range. Values below for $V_{out} = 1V$ unless noted.

<table>
<thead>
<tr>
<th>Current Measure Range</th>
<th>Setting Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 A – 1 A</td>
<td><120 µs (typical) (R<sub>load</sub> > 2Ω)</td>
</tr>
<tr>
<td>100 mA – 10 mA</td>
<td><100 µs (typical)</td>
</tr>
<tr>
<td>1 mA</td>
<td><3 ms (typical)</td>
</tr>
<tr>
<td>100 µA</td>
<td><3 ms (typical)</td>
</tr>
<tr>
<td>10 µA</td>
<td><230 ms (typical)</td>
</tr>
<tr>
<td>1 µA</td>
<td><250 ms (typical)</td>
</tr>
</tbody>
</table>

Capacitor Leakage Performance Using High-C Scripts

Test: 5V step and measure. 200ms (typical) @ 50nA.

Voltage Source Range Change Overshoot:

- VOLTAGE SOURCE RANG E CHANGE OVERSHOOT:
 - NOISE, 10Hz–20MHz (6V Range): <30mV peak-peak (typical).
 - Overshoot into a 100k load, 20MHz BW.

Mode Change Delay:

- 100µA Current Range and Above:
 - Delay into High Capacitance Mode: 10ms.
 - Delay out of High Capacitance Mode: 10ms.
- 1mA and 10µA Current Ranges:
 - Delay into High Capacitance Mode: 250ms.
 - Delay out of High Capacitance Mode: 10ms.

Voltage Source Input Impedance:

- 10G $\leq 30mV$ peak-peak (typical).

Notes:

26. High Capacitance Mode specifications are for DC measurements only.
27. 100mA range is not available in High Capacitance Mode.
28. High Capacitance Mode utilizes locked ranges. Auto Range is disabled.

IEEE-488: IEEE-488 1 compliant. Supports IEEE-488 2 common commands and status model.

RS-232: Baud rates from 300bps to 115200bps. Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none). When not programmed as the active host interface, the SourceMeter instrument can use the RS-232 interface to control other instrumentation.

Ethernet: RJ-45 connector. LXI Class C, 10/100BT, no auto MDIX.

Expansion Interface: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other.

Cable Type: Category 5e or higher LAN crossover cable.

LXI Compliance: LXI Class C 1 2.

Digital I/O Interface:

- Connector: 25-pin female D.
- Input/Output Pins: 14 open drain I/O bits.
- Absolute Maximum Input Voltage: 5.25V.
- Absolute Minimum Input Voltage: -0.25V.
- Maximum Logic High Input Voltage: 2.4V, +570µA.
- Minimum Logic High Input Voltage: 2.1V, +570µA.

Power Supply Pin: Limited to 600mA, solid state fuse protected.

Safety Interlock Pin: Active high input. >3.4V @ 24mA (absolute maximum of 6V) must be externally applied to this pin to ensure 200V operation. This signal is pulled down to chassis ground with a 10k resistor. 200V operation will be blocked when the INTERLOCK signal is <0.4V (absolute minimum –0.4V).

USB: USB 1.0 Host Controller (Memory Stick 1/3).

Power Supply: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max.

Cooling: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted.

Safety: Conforms to European Union Directive 73/23/EEC, EN 61010-1, and UL 61010-1.

Dimensions: 89mm high × 213mm wide × 460mm deep (3” in × 8½ in × 17½ in). Bench Configuration (with handle and feet): 104mm high × 258mm wide × 460mm deep (4¼ in × 10¼ in × 18¼ in). Maximum 2000 meters above sea level.

Environment: For indoor use only:
- Altitude: Maximum 2000 meters above sea level.
- Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C.
- Storage: −25°C to 65°C.

See pages 24 and 25 for measurement speeds and other specifications.

1.888.KEITHLEY (U.S. only)

www.keithley.com
2611A 2612A

SPECIFICATION CONDITIONS

This document contains specifications and supplemental information for the Models 2611A and 2612A System SourceMeter® instruments. Specifications are the standards against which the Models 2611A and 2612A are tested. Upon leaving the factory the 2611A and 2612A meet these specifications. Supplemental and typical values are non-warranted, apply at 25°C, and are provided solely as useful information.

Accuracy specifications are applicable for both normal and high capacitance modes. The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2611A and 2612A) terminals under the following conditions:

1. 23°C ± 5°C, <70% relative humidity.
2. After 2 hour warm-up.
3. Speed normal (1 NPLC).
5. Remote sense operation or properly zeroed local sense operation.
6. Calibration period = 1 year.

SOURCE SPECIFICATIONS

VOLTAGE SOURCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Range</th>
<th>Programming Resolution</th>
<th>Accuracy (1 Year)</th>
<th>Typical Noise (Peak-Peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.000 mV</td>
<td>5 µV</td>
<td>±0.02% + 35 µV</td>
<td>20 µV</td>
</tr>
<tr>
<td>2.00000 V</td>
<td>50 µV</td>
<td>±0.02% + 600 µV</td>
<td>50 µV</td>
</tr>
<tr>
<td>20.0000 V</td>
<td>500 µV</td>
<td>±0.02% + 5 mV</td>
<td>300 µV</td>
</tr>
<tr>
<td>200.000 V</td>
<td>5 mV</td>
<td>±0.02% + 50 mV</td>
<td>2 mV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±0.15 × accuracy specification/°C.

ADDITIONAL SOURCE SPECIFICATIONS

TRANSIENT RESPONSE TIME: <70μs for the output to recover to within 0.1% for a 10% to 90% step change in load.

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range.

- Range: Settling Time
 - 200 mV: <50 μs (typical)
 - 2 V: <50 μs (typical)
 - 20 V: <110 μs (typical)
 - 200 V: <700 μs (typical)

CURRENT SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values below for I SOURCE. R LOAD = 2V unless noted.

- Range: Settling Time
 - 1.5 A – 1 A: <120 μs (typical) (R LOAD > 6Ω)
 - 100 mA – 10 mA: <80 μs (typical)
 - 1 mA: <100 μs (typical)
 - 100 μA: <150 μs (typical)
 - 10 μA: <500 μs (typical)
 - 1 μA: <2 ms (typical)
 - 100 nA: <20 ms (typical)

DC FLOATING VOLTAGE: Output can be floated up to ±250VDC from chassis ground.

REMOTE SENSE OPERATING RANGE: Maximum voltage between HI and SENSE HI = 3V.

VOLTAGE OUTPUT HEADROOM:
- 20V Range: Max. output voltage = 202.3V – total voltage drop across source leads (maximum 1.2% per source lead).
- 200V Range: Max. output voltage = 23.3V – total voltage across source leads (maximum 1.2% per source lead).

OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode.

VOLTAGE SOURCE RANGE CHANGE OVERSHOT:<500mV + 0.1% of larger range (typical).

REMOTE SENSE RANGE CHANGE OVERSHOT: <5% of larger range + 300mVR LOAD (typical) – With source set to SENSE HI = 100%.

PULSE SPECIFICATIONS

- **MINIMUM PROGRAMMABLE PULSE WIDTH:** 100µs. **MAXIMUM PULSE WIDTH:** 1000µs. **MAXIMUM DUTY CYCLE:**
- **RANGE:** Maximum Current Limit
 - 1: 100 mA @ 200 V
 - 2: 1.5 A @ 200 V
 - 3: 10 A @ 200 V
- **RANGE:** Maximum Pulse Width
 - 1: DC, no limit
 - 2: DC, no limit
 - 3: 8.5 ms
- **RANGE:** Maximum Duty Cycle
 - 1: 100%
 - 2: 100%
 - 3: 100%

MINIMUM PROGRAMMABLE PULSE WIDTH: 100µs. **MAXIMUM PULSE WIDTH:** 1000µs. **MAXIMUM DUTY CYCLE:**

PULSE WIDTH PROGRAMMING RESOLUTION: 1µs.

PULSE WIDTH PROGRAMMING ACCURACY: ±5µs.

PULSE WIDTH JITTER: ±2µs (typical).
SOURCE SPECIFICATIONS (continued)

PULSE SPECIFICATIONS (continued)

QUADRANT DIAGRAM:

```
+10A  +1.5A  +1A  +0A  +0.1A  +0.5A  +1A  +1.5A  +2A  +3A  +4A  +5A  +10A
+10V  +9V  +8V  +7V  +6V  +5V  +4V  +3V  +2V  +1V  +0V  +1V  +2V  +3V  +4V  +5V
-10V  -9V  -8V  -7V  -6V  -5V  -4V  -3V  -2V  -1V  -2V  -3V  -4V  -5V  -6V  -7V
```

SOURCE AND MEASURE

METER SPECIFICATIONS

VOLTAGE MEASUREMENT ACCURACY 17, 18

<table>
<thead>
<tr>
<th>Range</th>
<th>Display Resolution 19</th>
<th>Input Resistance</th>
<th>Accuracy (1 Year) 23°C ±5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 000 mV</td>
<td>1 µV</td>
<td>>10 GΩ</td>
<td>±0.015% + 225 µV</td>
</tr>
<tr>
<td>2 0000 0 V</td>
<td>10 µV</td>
<td>>10 GΩ</td>
<td>±0.02% + 350 µV</td>
</tr>
<tr>
<td>20 000 0 V</td>
<td>100 µV</td>
<td>>10 GΩ</td>
<td>±0.015% + 5 mV</td>
</tr>
<tr>
<td>200 000 V</td>
<td>1 mV</td>
<td>>10 GΩ</td>
<td>±0.015% + 50 mV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0.15 × accuracy specification)/°C.

Applicable for normal mode only. Not applicable for high capacitance mode.

CURRENT MEASUREMENT ACCURACY 18, 21

<table>
<thead>
<tr>
<th>Range</th>
<th>Display Resolution 22</th>
<th>Voltage Burden 23</th>
<th>Accuracy (1 Year) 23°C ±5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 000 nA</td>
<td>1 pA</td>
<td><1 mV</td>
<td>0.06% + 100 pA</td>
</tr>
<tr>
<td>1 0000 0 µA</td>
<td>10 µA</td>
<td><1 mV</td>
<td>0.025% + 500 pA</td>
</tr>
<tr>
<td>10 0000 0 µA</td>
<td>100 µA</td>
<td><1 mV</td>
<td>0.025% + 1.5 nA</td>
</tr>
<tr>
<td>100 000 0 µA</td>
<td>1 000 µA</td>
<td><1 mV</td>
<td>0.02% + 25 nA</td>
</tr>
<tr>
<td>1 0000 0 mA</td>
<td>1 000 µA</td>
<td><1 mV</td>
<td>0.02% + 200 nA</td>
</tr>
<tr>
<td>10 0000 0 mA</td>
<td>10 000 µA</td>
<td><1 mV</td>
<td>0.01% + 3.5 mA</td>
</tr>
<tr>
<td>1 0000 0 A</td>
<td>10 000 µA</td>
<td><1 mV</td>
<td>0.05% + 3.5 mA</td>
</tr>
<tr>
<td>10 0000 A</td>
<td>1 000 000 µA</td>
<td><1 mV</td>
<td>0.4% + 25 mA (typical)</td>
</tr>
</tbody>
</table>

CURRENT MEASURE SETTLING TIME (Time for measurement to settle after a Vstep): Time required to reach 0.1% of final value after source level command is processed on a fixed range. Values for Vout = 2V unless noted. Current Range: 1mA. Settling Time: <100µs (typical).

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0.15 × accuracy specification)/°C.

Applicable for normal mode only. Not applicable for high capacitance mode.

CONTACT CHECK 27

<table>
<thead>
<tr>
<th>Speed</th>
<th>Maximum Measurement (For 60Hz (50Hz))</th>
<th>Accuracy (1 Year) 23°C ±5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>1 (1.2) ms</td>
<td>5% + 10 µΩ</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>4 (5) ms</td>
<td>5% + 1.2 µΩ</td>
</tr>
<tr>
<td>SLOW</td>
<td>36 (42) ms</td>
<td>5% + 0.3 µΩ</td>
</tr>
</tbody>
</table>

ADDITIONAL METER SPECIFICATIONS

MAXIMUM LOAD IMPEDANCE:

- Normal Mode: 10mΩ (typical).
- High Capacitance Mode: 50µF (typical).

COMMON MODE VOLTAGEx: ±50VDC.

COMMON MODE ISOLATION: >50GΩ, <5000pF.

OVERRANGE: 101% of source range, 102% of measure range.

MAXIMUM SENSE LEAD RESISTANCE: 4Ω for rated accuracy.

SENSE INPUT IMPEDANCE: >10GΩ.

NOTES

12. Times measured from the start of pulse to the start of time; see figure below.

13. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C.

See power equations in the reference manual for more information.

14. Voltage source operation with 1.5 A current limit.

15. Typical performance for minimum settled pulse widths:

<table>
<thead>
<tr>
<th>Source Value</th>
<th>Load</th>
<th>Source Settling (of range)</th>
<th>Min. Pulse Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V</td>
<td>0.5 Ω</td>
<td>1%</td>
<td>300 µs</td>
</tr>
<tr>
<td>20 V</td>
<td>20 Ω</td>
<td>0.2%</td>
<td>200 µs</td>
</tr>
<tr>
<td>100 V</td>
<td>100 Ω</td>
<td>0.2%</td>
<td>5 ms</td>
</tr>
<tr>
<td>200 V (1.5 Ω Limit)</td>
<td>200 Ω</td>
<td>0.2%</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>100 mA</td>
<td>200 Ω</td>
<td>1%</td>
<td>200 µs</td>
</tr>
<tr>
<td>1 A</td>
<td>20 Ω</td>
<td>1%</td>
<td>500 µs</td>
</tr>
<tr>
<td>10 A</td>
<td>0.5 Ω</td>
<td>1%</td>
<td>500 µs</td>
</tr>
</tbody>
</table>

Typical tests were performed using remote operation, 4W sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600A Reference Manual.

16. Times measured from the start of pulse to the start of time; see figure below.
RS-232: Baud rates from 300bps to 115200bps. Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none). When not programmed as the active host interface, the SourceMeter instrument can use the RS-232 interface to control other instrumentation.
ETHERNET: Bjt-65 connector, LXI Class C. 10-100BT, no auto MDIX.
EXPANSION INTERFACE: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other.
Cable Type: Category 5e or higher LAN crossover cable. Length: 3 meters maximum between each TSP enabled instrument.
LXI COMPLIANCE: LXI Class C 1.2.
DIGITAL I/O INTERFACE:

 Connector: 25-pin female D.
 Input/Output Pins: 14 open drain I/O bits.
 Absolute Maximum Input Voltage: 5.25V.
 Absolute Minimum Input Voltage: −0.25V.
 Maximum Logic Low Input Voltage: 0.7V. +850μA max.
 Minimum Logic High Input Voltage: 2.4V. +570μA.
 Maximum Source Current (flowing into Digital I/O bit): +960μA.
 Maximum Sink Current (flowing out of Digital I/O) bit: +5mA. –9.0mA.
 5V Power Supply Pin: Limited to 600mA, solid state fuse protected.
 Safety Interlock Pin: Active high input. +3.4V @ 24mA (absolute maximum of 6V) must be externally applied to this pin to ensure 200V operation. This signal is pulled down to chassis ground with a 10kΩ resistor. 200V operation will be blocked when the INTERLOCK signal is <0.4V (absolute minimum=0V). See figure below.

USB: USB 1.1 Host Controller (Memory Stick 1.0).
POWER SUPPLY: 100V to 250VAC, 50–60Hz (auto sensing). 240VA max.
COOLING: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted.
DIMENSIONS: 89mm high × 215mm wide × 460mm deep (3½ in × 8 3⁄8 in × 18 11⁄16 in). Bench Configuration (with handle and feet): 104mm high × 238mm wide × 460mm deep (4¼ in × 9 in × 17½ in).
WEIGHT: 2611A: 7.5kg (16.6 lbs). 2612A: 5.5kg (12.0 lbs).
ENVIRONMENT: For indoor use only: Altitude: Maximum 2000 meters above sea level.
Operating: 0° to 50°C, 70% R.H. up to 35°C. Derate 5% R.H./°C, 35°C to 55°C.
Storage: −25°C to 65°C.

METER SPECIFICATIONS (continued)

NOTES
17. Add 10µV to source accuracy specifications per volt of HI lead drop.
18. De-rate accuracy specifications for NPLC setting <1 by increasing error term. Add appropriate % of range term using table below.

VOLTAGE SOURCE R ANGE CHANGE OVERSHOOT (for 20V range and below):

<table>
<thead>
<tr>
<th>NPLC Setting</th>
<th>200mV Range</th>
<th>2V–200V Ranges</th>
<th>100mA Range</th>
<th>1µA–100mA Ranges</th>
<th>1A–1.5A Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0%</td>
<td>0.07%</td>
<td>0.1%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>0.001</td>
<td>0.8%</td>
<td>0.6%</td>
<td>1.0%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>0.0001</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

22. Applies when in single channel display mode.
21. High Capacitance Mode accuracy is applicable at 25°C ±5°C only.
20. High Capacitance Mode accuracy is applicable at 25°C ±5°C only.
19. Applies when in single channel display mode.
18. 100nA range is not available in High Capacitance Mode.
17. High Capacitance Mode specifications are for DC measurements only.
16. 100nA range is not available in High Capacitance Mode.
15. Applies when in single channel display mode.
14. Includes measurement of SENSE HI to HI and SENSE LO to LO contact resistances.
12. Applies when in single channel display mode.
11. De-rate accuracy specifications for NPLC setting <1 by increasing error term. Add appropriate % of range term using table below.
10. 10µA < 230 ms (typical)
9. 100 µA < 3 ms (typical)
8. 200 mV 600 µs (typical)
7. 2 V 600 µs (typical)
6. 10A range accessible only in pulse mode.
5. Four-wire remote sense only and with current meter mode selected. Voltage measure set to 200mV or 2V range only.
4. 100mA range accessible only in pulse mode.
3. 5mA range accessible only in pulse mode.
2. 5mV range accessible only in pulse mode.
1. 5mV range accessible only in pulse mode.

HIGH CAPACITANCE MODE 28, 29, 30

VOLTAGE SOURCE OUTPUT SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A.
Voltage Source Range | Settling Time with Ceq = 4.7µF
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mV</td>
<td>600 µs (typical)</td>
</tr>
<tr>
<td>2 V</td>
<td>600 µs (typical)</td>
</tr>
<tr>
<td>20 V</td>
<td>15 ms (typical)</td>
</tr>
<tr>
<td>200 V</td>
<td>20 ms (typical)</td>
</tr>
</tbody>
</table>

CURRENT MEASURE SETTLING TIME: Time required to reach within 0.1% of final value after voltage source is stabilized on a fixed range. Values below for Vsource = 2V unless noted.

Current Measure Range | Settling Time
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 A – 1 A</td>
<td><120 µs (typical)</td>
</tr>
<tr>
<td>100 mA – 10 mA</td>
<td><100 µs (typical)</td>
</tr>
<tr>
<td>1 mA</td>
<td><3 ms (typical)</td>
</tr>
<tr>
<td>100 µA</td>
<td><5 ms (typical)</td>
</tr>
<tr>
<td>10 µA</td>
<td><250 µs (typical)</td>
</tr>
<tr>
<td>1 A</td>
<td><250 µs (typical)</td>
</tr>
</tbody>
</table>

CAPACITOR LEAKAGE PERFORMANCE USING HIGH-G SCRIPTS 31: Load = 5µF || 10MΩ.
Test: 5V step and measure 200ms (typical) @ 50mA.

MODE CHANGE DELAY:
100mA Current Range and Above:
Delay into High Capacitance Mode: 10ms.
Delay out of High Capacitance Mode: 10ms.
Delay during High Capacitance Mode: 10ms.
1mA and 10µA Current Ranges:
Delay into High Capacitance Mode: 250ms.
Delay out of High Capacitance Mode: 10ms.
VOLTMETER INPUT IMPEDANCE: 50GΩ in parallel with 3300pF.
NOISE, 10Hz–20MHz (20V Range): <50µV peak-peak (typical).
VOLTAGE SOURCE RANGE CHANGE OVERSHOOT (for 20V range and below): <40mV < 0.1% of larger range (typical). Overshoot into a 200kΩ load, 20MHz BW.

NOTES
28. High Capacitance Mode specifications are for DC measurements only.
29. 200mA range is not available in High Capacitance Mode.
30. High Capacitance Mode utilizes locked ranges. Auto Range is disabled.

SEE PAGES 24 AND 25 FOR MEASUREMENT SPEEDS AND OTHER SPECIFICATIONS.

1.888.KEITHLEY (U.S. only)
www.keithley.com

KEITHLEY
A GREATER MEASURE OF CONFIDENCE

BASE MODEL SPECIFICATIONS

POWER SUPPLY:
100V to 250VAC, 50–60Hz (auto sensing). 240VA max.

COOLING:
Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted.

EMC:

SAFETY:

DIMENSIONS:
89mm high × 215mm wide × 460mm deep (3½ in × 8 3⁄8 in × 18 11⁄16 in). Bench Configuration (with handle and feet): 104mm high × 238mm wide × 460mm deep (4¼ in × 9 in × 17½ in).

WEIGHT:
2611A: 7.5kg (16.6 lbs). 2612A: 5.5kg (12.0 lbs).

ENVIRONMENT:
For indoor use only: Altitude: Maximum 2000 meters above sea level.
Operating: 0° to 50°C, 70% R.H. up to 35°C. Derate 5% R.H./°C, 35°C to 55°C.
Storage: −25°C to 65°C.
SPECIFICATION CONDITIONS

This document contains specifications and supplemental information for the Models 2635A and 2636A System SourceMeter® instruments. Specifications are the standards against which the Models 2635A and 2636A are tested. Upon leaving the factory the 2635A and 2636A meet these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information.

Accuracy specifications are applicable for both normal and high capacitance modes.

The source and measurement accuracies are specified at the SourceMeter CHANNEL A (2635A and 2636A) or SourceMeter CHANNEL B (2636A) terminals under the following conditions:

1. 23°C ± 5°C, 10–85% relative humidity.
2. After 2 hour warm-up.
3. Speed normal (1 NPLC).
5. Remote sense operation or properly zeroed local sense operation.
6. Calibration period = 1 year.

SOURCE SPECIFICATIONS

VOLTAGE SOURCE SPECIFICATIONS

VOLTAGE PROGRAMMING ACCURACY

<table>
<thead>
<tr>
<th>Range</th>
<th>Programming Resolution</th>
<th>Accuracy (1 Year)</th>
<th>Typical Noise (peak-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.000 mV</td>
<td>5 µA</td>
<td>±0.02% ± 375 µA</td>
<td>20 mV</td>
</tr>
<tr>
<td>2.00000 V</td>
<td>50 µA</td>
<td>±0.02% ± 600 µA</td>
<td>50 mV</td>
</tr>
<tr>
<td>20.0000 V</td>
<td>500 µA</td>
<td>±0.02% ± 5 mV</td>
<td>500 µV</td>
</tr>
<tr>
<td>200.000 V</td>
<td>5 mV</td>
<td>±0.02% ± 50 µV</td>
<td>2 mV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C):

\[
\text{Accuracy} = 20 \text{ ppm/°C}
\]

CURRENT PROGRAMMING ACCURACY

<table>
<thead>
<tr>
<th>Range</th>
<th>Programming Resolution</th>
<th>Accuracy (1 Year)</th>
<th>Typical Noise (peak-peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00000 mA</td>
<td>200 µA</td>
<td>±0.15% ± 2 pA</td>
<td>800 nA</td>
</tr>
<tr>
<td>10.0000 mA</td>
<td>2000 µA</td>
<td>±0.15% ± 5 pA</td>
<td>2 pA</td>
</tr>
<tr>
<td>100.000 mA</td>
<td>2 pA</td>
<td>±0.06% ± 50 pA</td>
<td>5 pA</td>
</tr>
<tr>
<td>1.00000 µA</td>
<td>20 pA</td>
<td>±0.03% ± 700 pA</td>
<td>25 pA</td>
</tr>
<tr>
<td>10.000 µA</td>
<td>200 pA</td>
<td>±0.03% ± 5 nA</td>
<td>60 nA</td>
</tr>
<tr>
<td>100.000 µA</td>
<td>2 nA</td>
<td>±0.03% ± 60 nA</td>
<td>3 nA</td>
</tr>
<tr>
<td>1.000 mA</td>
<td>20 nA</td>
<td>±0.03% ± 300 nA</td>
<td>6 nA</td>
</tr>
<tr>
<td>10.000 mA</td>
<td>200 nA</td>
<td>±0.03% ± 6 µA</td>
<td>200 nA</td>
</tr>
<tr>
<td>100.000 mA</td>
<td>2 µA</td>
<td>±0.03% ± 30 µA</td>
<td>600 nA</td>
</tr>
<tr>
<td>1.00000 µA</td>
<td>20 µA</td>
<td>±0.05% ± 1.8 mA</td>
<td>70 µA</td>
</tr>
<tr>
<td>15000.0 µA</td>
<td>50 µA</td>
<td>±0.06% ± 4 mA</td>
<td>150 µA</td>
</tr>
<tr>
<td>100.000 µA</td>
<td>200 µA</td>
<td>±0.5% ± 40 µA (typical)</td>
<td></td>
</tr>
</tbody>
</table>

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT:

\[
\text{Overshoot} = <20 mV (typical)
\]

VOLTAGE SOURCE OUTPUT SETTLING TIME:

\[
\text{Time} = <70 µs (typical)
\]

TRANSIENT RESPONSE TIME:

\[
\text{Time} = <40 µs (typical)
\]

VOLTAGE REGULATION: Line: ±0.01% of range. Load: ±0.01% of range.

VOLTAGE OUTPUT HEADROOM: 200 V Range: Max. output voltage = 202.3V – total voltage drop across source leads (maximum 110 mV (source lead)).

DC FLOATING VOLTAGE: Output can be floated up to ±250VDC.

REMOTE SENSE OPERATING RANGE

OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode.

VOLTAGE SOURCE CHARGE OVERSHOOT: <500 mV (1% of larger range (typical)).

ADDITIONAL SOURCE SPECIFICATIONS

PULSE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Region</th>
<th>Current Limit</th>
<th>Maximum Pulse Width</th>
<th>Maximum Duty Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 mA @ 200 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>1 µA @ 20 V</td>
<td>DC, no limit</td>
<td>100%</td>
</tr>
<tr>
<td>3<sup>11</sup></td>
<td>1 A @ 200 V</td>
<td>85 ms</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>10 A @ 5 V</td>
<td>1 ms</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

MINIMUM PROGRAMMABLE PULSE WIDTH

\[
\text{Minimum} = 100 µs
\]

PULSE WIDTH RESOLUTION: 1 µs.

PULSE WIDTH JITTER: 50 µs (typical).

ADDITIONAL MEASUREMENTS

A G R E A T E R M E A S U R E O F C O N F I D E N C E

1.888.KEITHLEY (U.S. only)

www.keithley.com

KEITHLEY

A G R E A T E R M E A S U R E O F C O N F I D E N C E

SOURCE AND MEASURE

Series 2600A specifications

ADDITIONAL SOURCE SPECIFICATIONS

TRANSIENT RESPONSE TIME

\[
\text{Time} = <70 µs (typical)
\]

VOLTAGE SOURCE OUTPUT SETTLING TIME

\[
\text{Time} = <40 µs (typical)
\]

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT

\[
\text{Overshoot} = <500 mV (typical)
\]

VOLTAGE SOURCE OUTPUT SETTLING TIME

\[
\text{Time} = <70 µs (typical)
\]

OVER TEMPERATURE PROTECTION

Internally sensed temperature overload puts unit in standby mode.

VOLTAGE SOURCE CHARGE OVERSHOOT

\[
\text{Overshoot} = <500 mV (typical)
\]

ADDITIONAL SOURCE SPECIFICATIONS

ADDITIONAL MEASUREMENTS

A Greater Measure of Confidence

1.888.KEITHLEY (U.S. only)

www.keithley.com

KEITHLEY

A Greater Measure of Confidence

SOURCE AND MEASURE

Series 2600A specifications

ADDITIONAL SOURCE SPECIFICATIONS

TRANSIENT RESPONSE TIME

\[
\text{Time} = <70 µs (typical)
\]

VOLTAGE SOURCE OUTPUT SETTLING TIME

\[
\text{Time} = <40 µs (typical)
\]

VOLTAGE SOURCE RANGE CHANGE OVERSHOOT

\[
\text{Overshoot} = <500 mV (typical)
\]

VOLTAGE SOURCE OUTPUT SETTLING TIME

\[
\text{Time} = <70 µs (typical)
\]

OVER TEMPERATURE PROTECTION

Internally sensed temperature overload puts unit in standby mode.

VOLTAGE SOURCE CHARGE OVERSHOOT

\[
\text{Overshoot} = <500 mV (typical)
\]

ADDITIONAL SOURCE SPECIFICATIONS

ADDITIONAL MEASUREMENTS

A Greater Measure of Confidence

1.888.KEITHLEY (U.S. only)

www.keithley.com

KEITHLEY

A Greater Measure of Confidence

SOURCE AND MEASURE

Series 2600A specifications
SOURCE SPECIFICATIONS (continued)

NOTES
1. Add 50µV to source accuracy specifications per volt of HI lead drop.
2. High Capacitance Mode accuracy is applicable at 25°C ±5°C only.
3. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
4. For sink mode operation (quadrants II and IV), add 0.06% of limit range to the corresponding current limit accuracy specifications. Specifications apply with sink mode operation enabled.
5. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
6. 10A range accessible only in pulse mode.
7. High Capacitance Mode accuracy is applicable at 23°C ±5°C only.
8. Full power source operation regardless of load to 30°C ambient. Above 30°C and/or power sink operation, refer to “Operating Boundaries” in the Series 2600A Reference Manual for additional power derating information.
9. Add 50µV to source accuracy specifications per volt of HI lead drop.
10. Add 10% of compliance range and ±0.02% of limit setting to the corresponding voltage source specification. For 200mV range add an additional 120mV of uncertainty.
11. Times measured from the start of pulse to the start off-time; see figure below.
12. Thermally limited in sink mode (quadrants II and IV) and ambient temperatures above 30°C. See power equations in the Reference Manual for more information.
13. Voltage source operation with 1.5A current limit.
14. Typical performance for minimum settled pulse widths:

<table>
<thead>
<tr>
<th>Source Value</th>
<th>Load</th>
<th>Source Settling (% of range)</th>
<th>Min. Pulse Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V</td>
<td>200 Ω</td>
<td>0.2%</td>
<td>200 μs</td>
</tr>
<tr>
<td>180 V</td>
<td>180 Ω</td>
<td>0.2%</td>
<td>5 μs</td>
</tr>
<tr>
<td>200 V (1.5 A Limit)</td>
<td>200 Ω</td>
<td>0.2%</td>
<td>5 μs</td>
</tr>
<tr>
<td>100 mA</td>
<td>200 Ω</td>
<td>1%</td>
<td>200 μs</td>
</tr>
<tr>
<td>1 A</td>
<td>180 Ω</td>
<td>0.2%</td>
<td>5 μs</td>
</tr>
<tr>
<td>10 A</td>
<td>5 Ω</td>
<td>0.5%</td>
<td>300 μs</td>
</tr>
</tbody>
</table>

Typical tests were performed using remote operation, 4W sense, and best, fixed measurement range. For more information on pulse scripts, see the Series 2600A Reference Manual.
15. Times measured from the start of pulse to the start off-time; see figure below.

METER SPECIFICATIONS

VOLTAGE MEASUREMENT ACCURACY

<table>
<thead>
<tr>
<th>Range</th>
<th>Display Resolution</th>
<th>Input Resistance</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.000 mV</td>
<td>1 µV</td>
<td>>10^4 Ω</td>
<td>±(0.015% + 250 µV)</td>
</tr>
<tr>
<td>2.00000 V</td>
<td>10 µV</td>
<td>>10^4 Ω</td>
<td>±0.02% + 350 µV</td>
</tr>
<tr>
<td>20.0000 V</td>
<td>100 µV</td>
<td>>10^4 Ω</td>
<td>±0.015% + 5 mV</td>
</tr>
<tr>
<td>200.000 V</td>
<td>1 mV</td>
<td>>10^4 Ω</td>
<td>±0.015% + 50 mV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) ±(0.15 × accuracy specification)°C. Applicable for normal mode only. Not applicable for high capacitance mode.

CURRENT MEASUREMENT ACCURACY

<table>
<thead>
<tr>
<th>Range</th>
<th>Display Resolution</th>
<th>Voltage Burden</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00 pA</td>
<td>1 fA</td>
<td><1 mV</td>
<td>±0.15% + 120 fA</td>
</tr>
<tr>
<td>1.00000 nA</td>
<td>10 fA</td>
<td><1 mV</td>
<td>±0.15% + 240 fA</td>
</tr>
<tr>
<td>10.0000 nA</td>
<td>100 fA</td>
<td><1 mV</td>
<td>±0.15% + 3 pA</td>
</tr>
<tr>
<td>100.000 nA</td>
<td>1000 fA</td>
<td><1 mV</td>
<td>±0.06% + 40 fA</td>
</tr>
<tr>
<td>1.00000 µA</td>
<td>10 pA</td>
<td><1 mV</td>
<td>±0.02% + 400 fA</td>
</tr>
<tr>
<td>10.0000 µA</td>
<td>100 pA</td>
<td><1 mV</td>
<td>±0.02% + 1.5 nA</td>
</tr>
<tr>
<td>100.000 µA</td>
<td>1 nA</td>
<td><1 mV</td>
<td>±0.02% + 25 nA</td>
</tr>
<tr>
<td>1.00000 mA</td>
<td>10 nA</td>
<td><1 mV</td>
<td>±0.02% + 200 nA</td>
</tr>
<tr>
<td>10.0000 mA</td>
<td>100 nA</td>
<td><1 mV</td>
<td>±0.02% + 2.5 µA</td>
</tr>
<tr>
<td>100.000 mA</td>
<td>1 µA</td>
<td><1 mV</td>
<td>±0.02% + 20 µA</td>
</tr>
<tr>
<td>1.0000 A</td>
<td>10 µA</td>
<td><1 mV</td>
<td>±0.03% + 1.5 µA</td>
</tr>
<tr>
<td>1.50000 A</td>
<td>10 µA</td>
<td><1 mV</td>
<td>±0.05% + 3.5 µA</td>
</tr>
<tr>
<td>10.0000 A</td>
<td>100 µA</td>
<td><1 mV</td>
<td>±0.4% + 25 µA</td>
</tr>
</tbody>
</table>

CURRENT MEASURE SETTLING TIME (Time for measurement to settle after a Vetep): Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Values for V_{out} = 2V unless noted. Current Range: 1mA. Settling Time: <100µs (typical).

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C) ±(0.15 × accuracy specification)°C. Applicable for normal mode only. Not applicable for high capacitance mode.

CONTACT CHECK

<table>
<thead>
<tr>
<th>Speed</th>
<th>Maximum Measurement Time to Memory For 60Hz (50Hz)</th>
<th>Accuracy (1 Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>1 (1.2) ms</td>
<td>±(0.15% + ohms)</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>4 (5) ms</td>
<td>5% + 10 µΩ</td>
</tr>
<tr>
<td>SLOW</td>
<td>36 (42) ms</td>
<td>5% + 0.3 µΩ</td>
</tr>
</tbody>
</table>

ADDITIONAL METER SPECIFICATIONS

MAXIMUM LOAD IMPEDANCE:
- Normal Mode: 10mF (typical)
- High Capacitance Mode: 50µF (typical).

COMMON MODE VOLTAGE: 250VDC.

COMMON MODE ISOLATION: >10GΩ, <450pF.

OVERRANGE: 101% of source range, 102% of measure range.

MAXIMUM SENSE LEAD RESISTANCE: 1kΩ for rated accuracy.

SENSE INPUT IMPEDANCE: >1GΩ.
System SourceMeter® Instruments

2635A

2636A

METER SPECIFICATIONS (continued)

NOTES

10. Add 50mV to source accuracy specifications per volt of HI lead drop.
17. Set accuracy specifications for NPLC setting <1 by increasing error term. Add appropriate % of range term using table below.

<table>
<thead>
<tr>
<th>NPLC Setting</th>
<th>200mV Range</th>
<th>2V–20V Range</th>
<th>100mA Range</th>
<th>1µA–100µA Range</th>
<th>1A–1.5A Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0.01</td>
<td>0.08%</td>
<td>0.07%</td>
<td>0.1%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>0.001</td>
<td>0.8%</td>
<td>0.6%</td>
<td>1%</td>
<td>0.5%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

20. Applies when in single channel display mode.
21. Four-wire remote sense only and with current meter mode selected. Voltage measure set to 200mV or 2V range only.
22. 10-μA Current Range Settling Time with C load = 4.7µF

HIGH CAPACITANCE MODE

<table>
<thead>
<tr>
<th>Voltage Source Range</th>
<th>Setting Time with C load = 4.7µF</th>
</tr>
</thead>
<tbody>
<tr>
<td>200mV</td>
<td><120 µs (typical) (R<sub>int</sub> >6Ω)</td>
</tr>
<tr>
<td>2 V</td>
<td><100 µs (typical)</td>
</tr>
<tr>
<td>20 V</td>
<td><5 ms (typical)</td>
</tr>
<tr>
<td>200 V</td>
<td><3 ms (typical)</td>
</tr>
</tbody>
</table>

CURRENT MEASURE SETTLING TIME: Time required to reach within 0.1% of final value after source level command is processed on a fixed range. Current limit = 1A.

<table>
<thead>
<tr>
<th>Current Measure Range</th>
<th>Setting Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 A – 1 A</td>
<td><120 µs (typical) (R<sub>int</sub> >6Ω)</td>
</tr>
<tr>
<td>100 mA – 10 mA</td>
<td><100 µs (typical)</td>
</tr>
<tr>
<td>10 µA</td>
<td><5 ms (typical)</td>
</tr>
<tr>
<td>100 µA</td>
<td><3 ms (typical)</td>
</tr>
<tr>
<td>10 µA (V<sub>out</sub> >20 V)</td>
<td><200 ms (typical)</td>
</tr>
</tbody>
</table>

CAPACITOR LEAKAGE PERFORMANCE USING HIGH-C SCRIPTS

Test: 5V step and measure: 200ms (typical) @ 50mA.

MODE CHANGE DELAY:

100µA Current Range and Above:
- Delay into High Capacitance Mode: 10ms.
- Delay out of High Capacitance Mode: 10ms.
- 1A and 10A Current Ranges:
 - Delay into High Capacitance Mode: 230ms.
 - Delay out of High Capacitance Mode: 10ms.

VOLT Meter Input Impedance: 90GΩ in parallel with 3500pF.

Noise, 10Hz–20MHz (20V Range):
10 µA < 230 ms (typical)
100 µA < 3 ms (typical)
1 mA < 20 ms (typical)
10 mA < 200 ms (typical)
1 A < 2000 ms (typical)

VOLTAGE SOURCE RANGE CHANGE OVERTURE (for 20V range and below):
<400mV + 0.1% of larger range (typical). Overshoot into a 200kΩ load, 20MHz BW.

NOTES

29. High Capacitance Mode specifications are for AC measurements only.
30. 100mA range and below are not available in high capacitance mode.
31. High Capacitance Mode utilizes locked ranges. Auto Range is disabled.

IEEE-488: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology.

RS-232: Baud rates from 300bps to 115200bps. Programmable number of data bits, parity type, and flow control (RTS/CTS hardware or none). When not programmed as the active host interface, the SourceMeter instrument can use the RS-232 interface to control other instrumentation.

ETHERNET: RJ-45 connector, LXI Class C, 10/100BT, no auto MDIX.

EXPANSION INTERFACE: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other.

Cable Type: Category 5e or higher LAN crossover cable.

Length: 3 meters maximum between each TSP enabled instrument.

LXI COMPLIANCE: LXI Class C 1.2.

DIGITAL I/O INTERFACE

CONNECTOR: 25-pin female D.

Input/Output Pins: 14 open drain I/O bits.

Absolute Maximum Input Voltage: 5.25V.

Absolute Minimum Input Voltage: –0.25V.

Maximum Logic Low Input Voltage: 0.7V. +850µA max.

Maximum Logic High Input Voltage: 2.1V. +570µA.

Absolute Minimum Current Source (flowing out of Digital I/O bit): –960µA.

Maximum Sink Current (@ Maximum Logic Low Voltage (0.7V)): –5.0mA.

Absolute Maximum Sink Current (Flowing into Digital I/O pin): –11mA.

5V Power Supply Pin: Limited to 600mA, solid state fuse protected.

Safety Interlock Pin: Active high input. >3.4V @ 24mA (absolute maximum of 6V) must be externally applied to this pin to ensure 200V operation. This signal is pulled down to chassis ground with a 10kΩ resistor. 200V operation will be blocked when the INTERLOCK signal is <0.4V (absolute minimum <0.4V). See figure below:

USB: USB 1.1 Host Controller (Memory Stick I/O).

Power Supply: 100V to 250VAC, 50–60Hz (auto sensing), 240VA max.

Cooling: Forced air. Side intake and rear exhaust. One side must be unobstructed when rack mounted.

Safety: Conforms to European Union Directive 73/23/EEC, EN 61010-1, and UL 61010-1.

Dimensions: 89mm high × 233mm wide × 460mm deep (3% in × 8% in × 17% in). Bench Configuration (with handle and feet): 104mm high × 383mm wide × 460mm deep (4% in × 9% in × 17% in).

Weight: 2635A: 4.75kg (10.4 lbs). 2636A: 5.50kg (12.0 lbs).

Environment: For indoor use only. Altitude: Maximum 2000 meters above sea level. Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C.

Storage: –25°C to 65°C.

SEE PAGES 24 AND 25 FOR MEASUREMENT SPEEDS AND OTHER SPECIFICATIONS.

1.888.KEITHLEY (U.S. only)

www.keithley.com
Series 2600A

Applicable to Models
2601A, 2602A, 2611A, 2612A, 2635A, and 2636A

Measurement Speed Specifications

Maximum Sweep Operation Rates (operations per second) for 60Hz (50Hz):

<table>
<thead>
<tr>
<th>A/D Converter Speed</th>
<th>Trigger Origin</th>
<th>Measure to Memory Using User Scripts</th>
<th>Measure to GPIB Using User Scripts</th>
<th>Source Measure to Memory Using User Scripts</th>
<th>Source Measure to GPIB Using User Scripts</th>
<th>Source Measure to GPIB Using Sweep API</th>
<th>Source Measure to GPIB Using Sweep API</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 NPLC</td>
<td>Internal</td>
<td>20000 (20000)</td>
<td>01000 (01000)</td>
<td>7000 (7000)</td>
<td>6200 (6200)</td>
<td>12000 (12000)</td>
<td>9000 (9000)</td>
</tr>
<tr>
<td>0.001 NPLC</td>
<td>Digital I/O</td>
<td>8100 (8100)</td>
<td>7000 (7100)</td>
<td>7000 (7100)</td>
<td>7000 (7000)</td>
<td>7000 (7000)</td>
<td>7000 (7000)</td>
</tr>
<tr>
<td>0.01 NPLC</td>
<td>Internal</td>
<td>5000 (4000)</td>
<td>4000 (5500)</td>
<td>4000 (5500)</td>
<td>4000 (5500)</td>
<td>6200 (6200)</td>
<td>6200 (6200)</td>
</tr>
<tr>
<td>0.01 NPLC</td>
<td>Digital I/O</td>
<td>3650 (3200)</td>
<td>3400 (3000)</td>
<td>3400 (3000)</td>
<td>3400 (3000)</td>
<td>3400 (3000)</td>
<td>3400 (3000)</td>
</tr>
<tr>
<td>0.1 NPLC</td>
<td>Internal</td>
<td>580 (490)</td>
<td>550 (465)</td>
<td>550 (465)</td>
<td>550 (465)</td>
<td>550 (465)</td>
<td>550 (465)</td>
</tr>
<tr>
<td>0.1 NPLC</td>
<td>Digital I/O</td>
<td>560 (470)</td>
<td>540 (460)</td>
<td>540 (460)</td>
<td>540 (460)</td>
<td>540 (460)</td>
<td>540 (460)</td>
</tr>
<tr>
<td>1.0 NPLC</td>
<td>Internal</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
<td>59 (49)</td>
</tr>
<tr>
<td>1.0 NPLC</td>
<td>Digital I/O</td>
<td>58 (48)</td>
<td>58 (48)</td>
<td>58 (48)</td>
<td>58 (48)</td>
<td>58 (48)</td>
<td>58 (48)</td>
</tr>
</tbody>
</table>

Maximum Single Measurement Rates (operations per second) for 60Hz (50Hz):

<table>
<thead>
<tr>
<th>A/D Converter Speed</th>
<th>Trigger Origin</th>
<th>Measure to GPIB</th>
<th>Source Measure to GPIB</th>
<th>Source Measure to GPIB</th>
<th>Source Measure to GPIB</th>
<th>Source Measure to GPIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 NPLC</td>
<td>Internal</td>
<td>1900 (1800)</td>
<td>1400 (1400)</td>
<td>1400 (1400)</td>
<td>1400 (1400)</td>
<td>1400 (1400)</td>
</tr>
<tr>
<td>0.01 NPLC</td>
<td>Internal</td>
<td>1450 (1400)</td>
<td>1200 (1100)</td>
<td>1100 (1100)</td>
<td>1100 (1100)</td>
<td>1100 (1100)</td>
</tr>
<tr>
<td>0.1 NPLC</td>
<td>Internal</td>
<td>450 (390)</td>
<td>425 (370)</td>
<td>425 (370)</td>
<td>425 (370)</td>
<td>425 (370)</td>
</tr>
<tr>
<td>1.0 NPLC</td>
<td>Internal</td>
<td>58 (48)</td>
<td>57 (48)</td>
<td>57 (48)</td>
<td>57 (48)</td>
<td>57 (48)</td>
</tr>
</tbody>
</table>

Maximum Measurement Range Change Rate: <150µs for ranges >10µA, typical. When changing to or from a range ≥1A, maximum rate is <450µs, typical.

Maximum Source Range Change Rate: <2.5ms for ranges >10µA, typical. When changing to or from a range ≥1A, maximum rate is <5.2ms, typical.

Maximum Source Function Change Rate: <1ms, typical.

Command Processing Time: Maximum time required for the output to begin to change following the receipt of the smux.source.levelv or smux.source.leveli command. <1ms typical.

Notes

2. Exclude current measurement ranges less than 1mA.
3. 2635A/2636A with default measurement delays and filters disabled.

Triggering and Synchronization Specifications

Triggering:
- Trigger in to trigger out: 0.5µs, typical.
- Trigger in to source change: 10 µs, typical.
- Trigger Timer accuracy: ±2µs, typical.
- Source change after LXI Trigger: 280µs, typical.

Synchronization:
- Single-node synchronized source change: <0.5µs, typical.
- Multi-node synchronized source change: <0.5µs, typical.
Series 2600A System SourceMeter® Instruments

Applicable to Models
2601A, 2602A, 2611A, 2612A, 2635A, and 2636A

SUPPLEMENTAL INFORMATION

FRONT PANEL INTERFACE: Two-line vacuum fluorescent display (VFD) with keypad and rotary knob.

Display:
• Show error messages and user defined messages
• Display source and limit settings
• Show current and voltage measurements
• View measurements stored in dedicated reading buffers

Keypad Operations:
• Change host interface settings
• Save and restore instrument setups
• Load and run factory and user defined test scripts (i.e. sequences) that prompt for input and send results to the display
• Store measurements into dedicated reading buffers

PROGRAMMING: Embedded Test Script Processor (TSP) accessible from any host interface. Responds to individual instrument control commands. Responds to high speed test scripts comprised of instrument control commands and Test Script Language (TSL) statements (e.g. branching, looping, math, etc.). Able to execute high speed test scripts stored in memory without host intervention.

Minimum Memory Available: 16MB (approximately 250,000 lines of TSL code).

Test Script Builder: Integrated development environment for building, running, and managing TSP scripts. Includes an instrument console for communicating with any TSP enabled instrument in an interactive manner. Requires:
• VISA (NI-VISA included on CD)
• Microsoft.NET Framework (included on CD)
• Keithley I/O Layer (included on CD)
• Pentium III 800MHz or faster personal computer
• Microsoft Windows 98, NT, 2000, or XP

Software Interface: TSP Express (embedded), Direct GPIB/VISA, READ/WRITE for VB, VC/C++, LabVIEW, LabWindows/CVI, etc.

READING BUFFERS: Dedicated storage area(s) reserved for measurement data. Reading buffers are arrays of measurement elements. Each element can hold the following items:
• Measurement
• Measurement status
• Source setting (at the time the measurement was taken)
• Range information

Two reading buffers are reserved for each SourceMeter channel. Reading buffers can be filled using the front panel STORE key and retrieved using the RECALL key or host interface.

Buffer Size, with timestamp and source setting: >60,000 samples
Buffer Size, without timestamp and source setting: >140,000 samples

SYSTEM EXPANSION: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other. See figure below:

Each SourceMeter instrument has two TSP-Link connectors to facilitate chaining instruments together.
• Once SourceMeter instruments are interconnected via TSP-Link, a computer can access all of the resources of each SourceMeter instrument via the host interface of any SourceMeter instrument.
• A maximum of 32 TSP-Link nodes can be interconnected. Each SourceMeter instrument consumes one TSP-Link node.

TIMER: Free running 47-bit counter with 1MHz clock input. Reset each time instrument powers up. Rolls over every 4 years.

Resolution: ±1µs.
Accuracy: ±100ppm.