The Models 2015-P and 2016-P Audio Analyzing Digital Multimeters and the Models 2015 and 2016 Total Harmonic Distortion Multimeters combine audio band quality measurements and analysis with a full-function 6½-digit DMM. Test engineers can make a broad range of voltage, resistance, current, frequency, and distortion measurements, all with the same compact, half-rack measurement instrument. The Model 2016 and 2016-P have twice the sine wave generator output of the Model 2015 for applications that require test signals greater than

Frequency Domain Distortion Analysis

8Vrms. The Model 2015-P and 2016-P offer additional processing capacity for frequency spectrum

For applications such as assessing non-linear distortion in components, devices, and systems, DSPbased processing allows the Models 2015-P, 2015, 2016, and 2016-P to provide frequency domain analysis in conventional time domain instruments.

They can measure Total Harmonic Distortion (THD) over the complete 20Hz to 20kHz audio band. They also measure over a wide input range (up to 750Vrms) and have low residual distortion (–87dB). The THD reading can be expressed either in decibels or as a percentage.

analysis.

In addition to THD, the Models 2015, 2015-P, 2016, and 2016-P can compute THD+Noise and Signalto-Noise plus Distortion (SINAD). For analyses in which the individual harmonics are the criteria of greatest interest, the instruments can report any of the (up to 64) harmonic magnitudes that can be included in the distortion measurements. The user can program the actual number of harmonics to be included in a computation, so accuracy, speed, and complexity can be optimized for a specific application. (See *Figure 1*.)

2015, 2015-P, 2016, 2016-P 6¹/₂-Digit Audio Analyzing Multimeters

- THD, THD+Noise, and SINAD measurements
- 20Hz–20kHz sine wave generator
- Fast frequency sweeps
- 2015-P, 2016-P: Identifies peak spectral components
- 2015, 2015-P: 4Vrms singleended or 8Vrms differential output
- 2016, 2016-P: 9.5Vrms singleended or 19Vrms differential output
- Individual harmonic magnitude measurements
- 5 standard audio shaping filters
- 13 DMM functions (6¹/₂ digits)

APPLICATIONS

- Wireless communication device audio quality testing
- Component linearity testing
- Lighting and ballast THD limit conformance testing
- Telephone and automotive speaker testing

1.888.KEITHLEY (U.S. only)

www.keithley.com

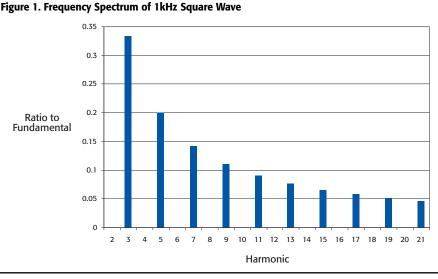
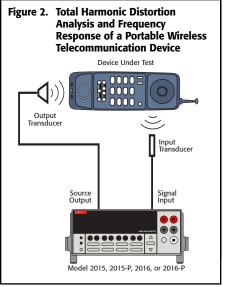
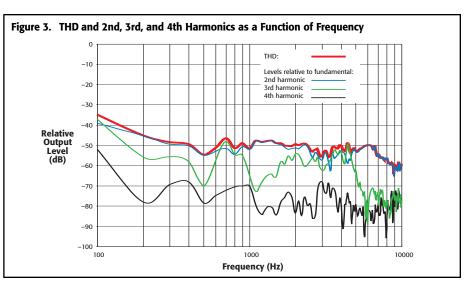



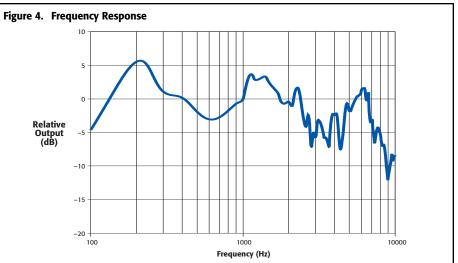
Figure 1 shows a plot of a square wave's harmonics (frequency components) computed and transmitted to a personal computer by the Model 2015 or 2016. A square wave's spectral content consists of only odd harmonics whose magnitudes are (1/harmonic number × the magnitude of the fundamental). For example, the magnitude of the third harmonic is $\frac{1}{3}$ the magnitude of the fundamental.

Figures 2, 3, and 4 demonstrate how the Model 2015, 2015-P, 2016, or 2016-P can provide both time domain and frequency domain measurements in a single test protocol. Figure 2 shows a sample test system schematic with a telecommunication device in a loop back mode test. The Audio Analyzing DMM's source provides a stimulus frequency sweep, and the Audio Analyzing DMM measures the response from the microphone circuit. Figure 3 shows the resulting frequency domain analysis of the THD and the first three harmonics as a function of frequency. Figure 4 shows the time domain analysis of microphone circuit output voltage as a function of frequency.

Ordering Information

- 2015 Total Harmonic Distortion 6½-Digit Multimeter
- 2015-P Audio Analyzing DMM 2016 Total Harmonic Distortion 6½-Digit DMM w/9V Source Output
- 2016-P Audio Analyzing DMM w/9V Source Output


These products are available with an Extended Warranty.


Accessories Supplied

Model 1751 Safety Test Leads, User Manual, Service Manual.

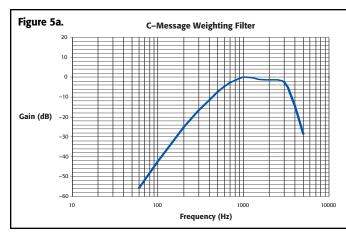
DIGITAL MULTIMETERS & SYSTEMS

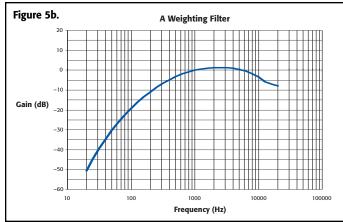
6¹/₂-Digit THD Multimeters 6¹/₂-Digit Audio Analyzing Multimeters

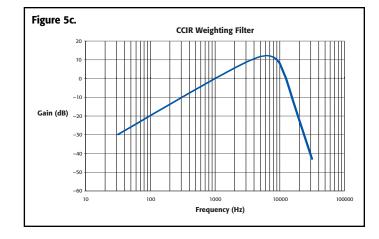
Optimized for Production Testing

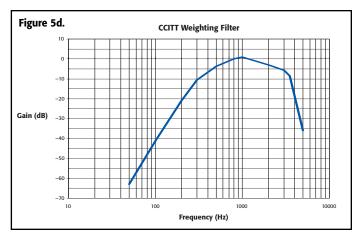
The Models 2015, 2015-P, 2016, and 2016-P can perform fast frequency sweeps for characterizing audio-band circuitry in production test systems. For example, the instruments can execute a single sweep of 30 frequencies and transmit both rms voltage readings and THD readings to a computer in only 1.1 seconds. With that data, a complete frequency response analysis and a harmonic distortion vs. frequency analysis can be performed in a very short time. Thus high speed testing of the audio performance of a high volume device such as a cellular telephone can be performed without reducing the number of tests or reducing the measurements in each test. With these instruments, which are optimized for production testing, test engineers can lower test times, in comparison to test speeds achievable with general purpose audio analyzers, without sacrificing production test quality.

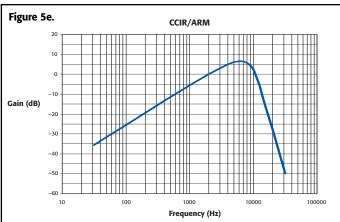
Dual Output Source


The Models 2015, 2015-P, 2016, and 2016-P include an internal audio band sine wave source for generating stimulus signals. A second output, the inverse of the first output, is also available, simplifying the testing of differential input circuits for common mode or noise cancellation performance.




1.888.KEITHLEY (U.S. only)


www.keithley.com


6¹/₂-Digit THD Multimeters 6¹/₂-Digit Audio Analyzing Multimeters

The Models 2015 and 2015-P have a 4Vrms single-ended output and 8Vrms differential source output. For tests that require a higher stimulus signal, the Model 2016 and 2016-P provide a 9.5Vrms single-ended output and a 19Vrms differential output.

Wide Selection of Audio Filters

Five industry-standard bandpass filters are provided for shaping the input signal for audio and telecommunication applications. Available filters include the CCITT weighting filter, CCIR filter, C-message filter, CCIR/ARM filter, and "A" weighting filter (see *Figures 5a–5e*). The Models 2015, 2015-P, 2016, and 2016-P provide programmable, high cutoff (low pass) and low cutoff (high pass) filters. Furthermore, the two filters can be implemented together to form a bandpass filter. The programmable filters can be used to filter out noise generated by electromechanical machinery on the production floor or to simulate other types of system transmission characteristics.

Broad Measurement Flexibility

In addition to their THD, THD+Noise, SINAD, and individual harmonic measurement capabilities, the instruments provide a comprehensive set of DMM functions, including DCV, ACV, DCI, ACI, $2W\Omega$, $4W\Omega$, temperature, frequency, period, dB, dBm, and continuity measurements, as well as diode testing. This multi-functional design minimizes added equipment costs when configuring test setups.

1.888.KEITHLEY (U.S. only)

www.keithley.com

6¹/₂-Digit THD Multimeters 6¹/₂-Digit Audio Analyzing Multimeters

Wide Band or Narrow Band Noise Measurements

The Models 2015, 2015-P. 2016, and 2016-P are capable of measuring both wide band noise and narrow band noise. Alternatively, these instruments' DSP (digital signal processing) capabilities allow users to make frequency domain measurements of RMS voltage noise over the 20Hz-20kHz frequency audio band or a narrow portion of the band. Furthermore, noise measurements can be extracted in the presence of a stimulus signal for fast signal-to-noise computations.

Spectrum Analysis

Audio analyzing and total harmonic distortion DMMs

The Model 2015-P and 2016-P have internal computational capabilities that allow them to characterize an acquired signal spectrum. These instruments can identify and report the frequency and amplitude of the highest value in a complete spectrum or within a specified frequency band. It can also identify additional peaks in descending order of magnitude (see *Figure 6*). The Model 2015-P's and 2016-P's on-board capabilities make it simple to obtain a thorough analysis of a frequency spectrum more quickly and with little or no need for external analysis software.

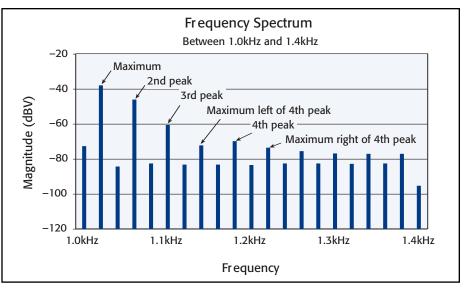


Figure 6. The Model 2015-P and 2016-P directly identify peak values of the frequency spectrum.

ACCESSORIES AVAILABLE

CABLES/ADAPTERS		OTHER	
7007-1	Shielded IEEE-488 Cable, 1m (3.3 ft)	KPCI-488	IEEE-488 Interface/Controller for the PCI Bus
7007-2	Shielded IEEE-488 Cable, 2m (6.6 ft)	KUSB-488	IEEE-488.2 USB-to-GPIB Interface Adapter
8501-1, 8501-2	Trigger-Link Cables, 1m (3.3 ft), 2m (6.6 ft)	TestPoint	Test Development Software
8502	Trigger Link Adapter Box	1050	Padded Carrying Case
8503	Trigger Link Cable to 2 male BNCs,1m (3.3 ft)	2015-EW	1 Year Warranty Extension
7009-5	RS-232 Cable	2015-P-EW	1 Year Warranty Extension
RACK MOUN	IT KITS	2016-EW	1 Year Warranty Extension
4288-1	Single Fixed Rack Mount Kit	2016-P-EW	1 Year Warranty Extension
4288-2	Dual Fixed Rack Mount Kit		

1.888.KEITHLEY (U.S. only)

www.keithley.com

6¹/₂-Digit THD Multimeters 6¹/₂-Digit Audio Analyzing Multimeters

DISTO	DRTION CHARACTER	RISTICS
VOLTAGE RANGE: 100mV, 1V,	10V, 100V, 750V (user selectable	e).
INPUT IMPEDANCE: $1M\Omega$ pa	ralleled by <100pF.	
DISPLAY RANGE: 0-100% or	0-100.00dB.	
RESOLUTION: 0.0001% or 0.0	00001dB.	
FUNDAMENTAL FREQUENCY	RANGE: 20Hz-20kHz.	
HARMONIC FREQUENCY RA	NGE: 40Hz-50kHz.	
FREQUENCY RESOLUTION: ().008Hz.	
FREQUENCY ACCURACY: ±0.	.01% of reading.	
FREQUENCY TEMPERATURE	COEFFICIENT: ≤100ppm over	operating temperature range.
MEASUREMENT MODE	ACCURACY (1 Year, 23°C ±5°C)	RESIDUAL DISTORTION ¹
THD and individual harmonic magnitudes	±0.8 dB, 20 Hz to 20 kHz ²	0.004% or -87 dB 20 Hz to 20 kHz
THD + n	±1.5 dB, 100 Hz to 20 kHz ²	0.056% or -65 dB 20 Hz to 20 kHz
SINAD	±1.5 dB 100 Hz to 20 kHz ²	+65 dB 20 Hz to 20 kHz
AC Level V rms	±(0.13% of reading + 0.009% of range) 20 Hz to 20 kHz	

DISTORTION MEASUREMENT AUDIO FILTERS

None C-Message CCITT Weighting CCIR/ARM CCIR "A" Weighting

NUMBER OF HARMONICS INCLUDED IN THD CALCULATION: 2 to 64 (user selectable). HI AND LO CUTOFF FILTERS (bus settable): 20Hz-50kHz. Can be combined to form brickwall bandpass filter.

FUNDAMENTAL FREQUENCY ACQUISITION MODE	FUNDAMENTAL FREQUENCY RANGE	MINIMUM READINGS PER SECOND
Single acquisition	20 Hz to 100 Hz	14
or stored value	100 Hz to 1 kHz	24
	1 kHz to 20 kHz	28
Automatic	20 Hz to 30 Hz	5.5
	30 Hz to 400 Hz	6
	400 Hz to 20 kHz	6.6

FREQUENCY SWEEP READING RATE NUMBER OF FREQUENCIES TIME (seconds)⁴ 0.2 30 1.1 100 3.5 200 6.9

NOTES

1. Input signal at full scale.

- 2. $V_{IN} \ge 20\%$ of range and harmonics > -65dB.
- Speeds are for default operating conditions (*RST), and display off, auto range off, binary data transfer, trig delay = 0.
- Typical times: frequencies in 400–4kHz range, binary data transfer, TRIG DELAY = 0, Display OFF, Auto Range OFF. Data returned is THD measurement plus AC voltage.

GENERATOR CHARACTERISTICS

FREQUENCY RANGE: 10-20kHz. FREQUENCY RESOLUTION: 0.007Hz. FREQUENCY ACCURACY: ±(0.015% of reading + 0.007Hz)¹ FREQUENCY TEMPERATURE COEFFICIENT: <100ppm over operating temperature range.

SOURCE OUTPUT:

WAVEFORM: Sinewave.	
AMPLITUDE RANGE:	2015 , 2015-P : 2V rms (50Ω and 600Ω) or 4V rms (HI Z). 2016 , 2016-P : 4.75V rms (50Ω and 600Ω) or 9.5V rms (HI Z).
AMPLITUDE RESOLUTION:	2015, 2015-P: $0.5mV$ rms (50 Ω and 600 $\Omega)$ or 1mV rms (HI Z). 2016, 2016-P: $1.25mV$ rms (50 Ω and 600 $\Omega)$ or 2.5mV rms (HI Z).
AMPLITUDE ACCURACY:	2015 , 2015 -P: ±(0.3% of setting + 2mV) ^{1,4} . 2016 , 2016 -P: ±(0.3% of setting + 5mV) ^{1,4} .
AMPLITUDE TEMPERATURI	E COEFFICIENT: Typically 0.015%/°C.
AMPLITUDE FLATNESS: ±0	.1dB ^{1, 4, 5} .
ΟυΤΡυΤ ΙΜΡΕΔΑΝCE: 50Ω	$\pm 1\Omega$ or $600\Omega \pm 10\Omega$, user selectable.
THD: -64dB6.	
NOISE:	2015 , 2015-P : 100μV rms ² . 2016 , 2016-P : 250μV rms ² .
DC OFFSET VOLTAGE: 2015	5. 2015-P: ±1.2mV ¹ , 2016, 2016-P: ±3mV ¹ ,

INV/PULSE OUTPUT (SINEWAVE MODE):

	· · · · · · · · · · · · · · · · · · ·
FREQUENCY: Same as source	e output.
AMPLITUDE RANGE:	2015 , 2015-P : 2V rms (50Ω and 600Ω) or 4V rms (HI Z). 2016 , 2016-P : 4.75V rms (50Ω and 600Ω) or 9.5V rms (HI Z).
AMPLITUDE RESOLUTION:	2015, 2015-P: $0.5mV$ (50 Ω and 600 $\Omega)$ or 1mV rms (HI Z). 2016, 2016-P: $1.25mV$ rms (50 Ω and 600 $\Omega)$ or 2.5mV rms (HI Z).
AMPLITUDE ACCURACY:	2015 , 2015 -P: ±(2.0% of setting + 2mV) ^{1,4} . 2016 , 2016 -P: ±(2.0% of setting + 5mV) ^{1,4} .
AMPLITUDE FLATNESS: ±0.	1dB ^{1, 4, 5} .
OUTPUT IMPEDANCE: Same	e as Source Output setting.
THD: -64dB6.	
NOISE:	2015, 2015-P: 100μV rms ² . 2016, 2016-P: 250μV rms ² .
DC OFFSET VOLTAGE:	2015, 2015-P: ±1.1mV typ., ±13mV max. ¹ 2016, 2016-P: ±3mV typ., ±13mV max. ¹

INV/PULSE OUTPUT (PULSE MODE):

IIII/I OLOL V				
FREQUENCY: Sa	ime as source output.			
DUTY CYCLE: 4	5% ±3%.			
OUTPUT IMPEI	DANCE: Same output impedance as the source output.			
AMPLITUDE:	$0.0V \pm 0.07V$ to $4.9V \pm 0.12V$ pulse open circuit ^{1, 3} . 0.0V $\pm 0.05V$ to $3.3V \pm 0.08V$ pulse $100\Omega \ load^{1, 3}$.			
OVERSHOOT:	1.0V maximum pulse open circuit ³ . 0.2V maximum with 100Ω load pulse open circuit ³ .			
UNDERSHOOT:	1.1V maximum pulse open circuit ³ . 0.45V maximum with 100 Ω load pulse open circuit ³ .			

NOTES

1. 1 year, 23°C ±5°C.

- 2. Measured at $V_{OUT} = 0V$ with gain 100 amplifier and 2-pole 50kHz low pass filter, Inv/Pulse in sinewave mode, HI Z output impedance, and no load. 3. With HI Z output impedance and 1m 50 Ω coaxial cable

5. 4V output.

4. HI Z output impedance, no load.

1.888.KEITHLEY (U.S. only)

6. THD measurement includes harmonics 2 through 5, 1V rms output, HI Z, no load.

6¹/₂-Digit THD Multimeters 6¹/₂-Digit Audio Analyzing Multimeters

DC VOLTAGE

RANGE	RESOLUTION	ACCURACY 23 ±(ppm of rdg. + pj 90 Day		e) INPUT RESISTANCE
100.0000 mV	$0.1 \mu V$	40 + 35	50 + 35	$> 10 \ G\Omega$
1.000000 V	$1.0 \mu V$	25 + 7	30 + 7	$> 10 G\Omega$
10.00000 V	$10 \mu V$	20 + 5	30 + 5	$> 10 \text{ G}\Omega$
100.0000 V	$100 \mu V$	30 + 6	45 + 6	$10 \text{ M}\Omega \pm 1\%$
1000.000 V	1 mV	35 + 6	45 + 6	$10 \text{ M}\Omega \pm 1\%$

RESISTANCE

RANGE	RESOLUTION	ACCURACY ±(ppm of rdg. + 90 Day		TEST CURRENT
KANGE	RESOLUTION	50 Day	i icui	CORREIT
100.0000 Ω	$100 \ \mu\Omega$	80 + 40	100 + 40	1 mA
$1.000000 \text{ k}\Omega$	$1 \text{ m}\Omega$	80 + 10	100 + 10	1 mA
$10.00000 \text{ k}\Omega$	$10 \mathrm{m}\Omega$	80 + 10	100 + 10	$100 \ \mu A$
100.0000 k Ω	$100 \mathrm{m}\Omega$	80 + 10	100 + 10	10 µA
$1.000000 \mathrm{M}\Omega$	1 Ω	80 + 10	100 + 10	10 µA
$10.00000\mathrm{M}\Omega$	10 Ω	450 + 10	600 + 10	$700~\text{nA}/\!/10~\text{M}\Omega$
$100.0000\text{M}\Omega$	100 Ω	2000 + 30	2200 + 30	$700~n\text{A}/\!/10~\text{M}\Omega$

DC CURRENT

RANGE	± RESOLUTION	ACCURACY 2 (ppm of rdg. + 90 Day		BURDEN VOLTAGE
10.00000 mA	10 nA	300 + 80	500 + 80	< 0.15 V
100.0000 mA	100 nA	300 + 800	500 + 800	< 0.03 V
1.000000 A	1 μA	500 + 80	800 + 80	< 0.3 V
3.00000 A	$10 \mu A$	1200 + 40	1200 + 40	<1 V

CONTINUITY 2W

		ACCURACY 23°C ± 5°C		
RANGE	RESOLUTION	±(ppm of rdg. + 90 Day	ppm of range) 1 Year	TEST CURRENT
1 kΩ	$100\mathrm{m}\Omega$	100 + 100	120 + 100	1 mA

DIODE TEST

		ACCURACY 2 (ppm of rdg. +		TEST
RANGE	RESOLUTION	90 Day	1 Year	CURRENT
3.00000 V	10 µV	30 + 7	40 + 7	1 mA
10.00000 V	$10 \mu V$	30 + 7	40 + 7	$100 \ \mu A$
10.00000 V	$10 \mu V$	30 + 7	40 + 7	$10 \ \mu \text{A}$

DC OPERATING CHARACTERISTICS

FUNCTION	DIGITS	READINGS/s	PLCs
DCV (all ranges),	61/2	5	10
DCI (all ranges),	61/2	30	1
2W Ohms (<10M ranges)	61/2	50	1
	51/2	270	0.1
	51/2	500	0.1
	51/2	1000	0.04
	4 ¹ / ₂	2000	0.01

DC SYSTEM SPEEDS

RANGE C FUNCTIO /s. AUTORAN ms. ASCII REA 232 (19.2K baud): 55/s. MAX. INT R RATE: 2000/s. MAX. EXT ER RATE: 400/s.

1.888.KEITHLEY (U.S. only)

STEM SPEE
HANGE: 50/s.
N CHANGE: 45/
NGE TIME: <30 r
ADINGS TO RS-2
ERNAL TRIGGE
FERNAL TRIGGE

	lev.com

TRUE RMS AC VOLTAGE AND CURRENT CHARACTERISTICS

RANGE	RESOLUTION	FREQUENCY RANGE	ACCURACY (1 Year) 23°C ±5°C ±(% of reading + % of range)
100 mV to 750 V	$0.1\mu\text{V}$ to 1mV	3 Hz-10 Hz	0.35 ± 0.03
		10 Hz-20 kHz	0.06 + 0.03
		20 kHz-50 kHz	0.12 ± 0.05
		50 kHz-100 kHz	0.60 + 0.08
		100 kHz-300 kHz	4 + 0.5

AC OPERATING CHARACTERISTICS

FUNCTION	DIGITS	READINGS/s	RATE	BANDWIDTH
ACV (all ranges), and	6½ ³	2s/reading	SLOW	3 Hz-300 kHz
ACI (all ranges)	6½ 3	1.4	MED	30 Hz-300 kHz
	61/24	4.8	MED	30 Hz-300 kHz
	6½ 3	2.2	FAST	300 Hz-300 kHz
	61/2 4	35	FAST	300 Hz-300 kHz

FREQUENCY AND PERIOD CHARACTERISTICS

ACV RANGE	FREQUENCY RANGE	PERIOD RANGE	GATE TIME	RESOLUTION ±(ppm of reading)	ACCURACY 90 DAY/1 YEAR ±(% of reading)
100 mV	3 Hz	333 ms	1 s (SLOW)	0.333	0.01
to	to	to	0.1 s (MED)	3.33	0.01
750 V	500 kHz	$2 \mu s$	10 ms (FAST)	33.3	0.01

AC AND FREQUENCY NOTES

Specifications are for squarewave inputs only. Input signals must be >10% of ACV range. If input is <20mV on the 100mV range, then the frequency must be >10Hz.

2. 20% overrange on all ranges except 750V range.

3. 0.01% of step settling error. Trigger delay = 400ms.

Trigger delay = 0.

TEMPERATURE CHARACTERISTICS THERMOCOURIE

			90 Day/1 Year (23°C ±5°C)		
TYPE	RANGE	RESOLUTION	Relative to Reference Junction		
J	-200 to + 760°C	0.001°C	±0.5°C		
K	-200 to +1372°C	0.001°C	±0.5°C		
Т	-200 to + 400°C	0.001°C	±0.5°C		

ACCUPACY

GENERAL SPECIFICATIONS

POWER SUPPLY: 100V/120V/220V/240V.

LINE FREQUENCY: 50Hz to 60Hz and 400Hz, automatically sensed at power-up.

POWER CONSUMPTION: 40VA.

OPERATING ENVIRONMENT: Specified for 0°C to 50°C. Specified to 80% R.H. at 35°C and at an altitude of up to 2000m.

STORAGE ENVIRONMENT: -40°C to 70°C.

WARRANTY: 3 years.

SAFETY: Conforms with European Union Directive 73/23/EEC, EN 610110-1.

EMC: Conforms with European Union Directive 89/336/EEC, EN 61326-1.

WARMUP: 1 hour to rated accuracy.

DIMENSIONS: Rack Mounting: 89mm high \times 213mm wide \times 370mm deep (3½ in \times 8% in \times 14% in).

Bench Configuration (with handle and feet): $104mm high \times 238mm wide \times 370mm deep$ $(4^{1/8} \text{ in} \times 9^{3/8} \text{ in} \times 14^{9/16} \text{ in}).$

NET WEIGHT: 4kg (8.8 lbs).

SHIPPING WEIGHT: 5kg (11 lbs).

VOLT HERTZ PRODUCT: $\leq 8 \times 10^{7}$ V·Hz.

ACCESSORIES SUPPLIED: Model 1751 Safety Test Leads, User Manual.

