IFR MLS-800

A passion for performance.

The MLS-800 provides diagnostic test capabilities for microwave landing system angle receivers.

- Test Operational Menu supports ICAO 1985 and EUROCAE ED-53A and ED-36A
- Complete Main Path Simulation: Approach (AZ) and High Rate Azimuth (HiAZ) Elevation (EL) Back Azimuth (BAZ) Flare (FL)
- Complete Multi-path (MP) Simulation Capability: Interference Pulses Selectable Fade Rate Modulation of 0.05, 1 and 1000 Hz
- Control of all Beam Parameters: Angular Position Beam Amplitude Referenced to the Preamble Norm and Half Width Pulse Selectable Beam Width at $0.5^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}$ or 5°
- Sync Capability for: External Monitoring Designating PFE and CMN Function Designating Multi-path Function
- Preamble Parity, Symmetry and Percent Update
- Simulates all Basic Data Words plus Auxiliary Data Words with Parity Selection
- Full Range of MLS Channels

Aeroflex is a leader in the design, manufacture and marketing of Avionics test systems.

The IFR MLS-800 is a microprocessor controlled Ground Station Simulator designed to operate from a bench test environment. Test parameters are selected via a 44-position keyboard and displayed on test operational menus.

Other Features

- OCI Control for Right (RT), Left (LT) and Rear (RR)
- 75 dB AZ to EL Ratio Capability Propellor/Rotor Modulation at 1 to 100 Hz Variable in 1 Hz steps Morse Code Identification Capability
- ARINC 429 Receiver with PFE and CMN calculations
- External RF Reference Input
- Clearance Pulse Simulation
- 6.75 Hz Modulation
- IEEE-488-1978 Interface for Remote Control Operation

SPECIFICATION

GENERAL REQUIREMENTS

- Unless otherwise noted the following equipment performance characteristics are warranted over the specified environmental conditions following a 20 minute warm-up period.
- All RF measurements are referenced to 50Ω.
- Accuracy and resolution stated in percent are referenced to measured or desired values.
- Where resolution exceeds accuracy, resolution takes precedence.
- Notes are intended to provide information useful in applying the instrument by giving specific setup information. Notes are found in the notes section of this specification.

RF SIGNAL GENERATOR

FREQUENCY

Frequency Range
5031.0 to 5090.7 MHz

Steps

0.3 MHz

Accuracy

$$
\pm 1.0 \mathrm{kHz}
$$

OUTPUT POWER

Level Range

-17 to $-122 d B m$
Level Accuracy

$$
\pm 2.0 \mathrm{~dB}
$$

Level Flatness

$$
\pm 0.5 \mathrm{~dB} \text { at }-20 \mathrm{dBm} \quad \text { (Note } 1 \text { and 2) }
$$

Attenuator Accuracy

$$
\pm 1.0 \mathrm{~dB}
$$

Attenuator Monotonicity

$$
\pm 0.5 \text { to } 1.5 \mathrm{~dB} \text { (Each Step) }
$$

Spectral Purity
Noise Floor
Offset ± 0.3 to 1.2 MHz from Cf $-105 \mathrm{dBc} / \mathrm{Hz}$ (Note 3 and 4)

Residual FM Modulation

$$
<1 \mathrm{kHz} \text { peak, } 0.01 \text { to } 15 \mathrm{kHz} \text { BW }
$$

Residual Phase Modulation

$$
\text { <0.5 radians peak, } 0.3 \text { to } 15 \mathrm{kHz} \text { BW }
$$

Spurious Signal Rejection (in-band)
From ± 0.3 to 1.2 MHz 45 dBc
From ± 1.2 to 30 MHz (band end) 65 dBc
Spurious Signal Rejection (out of band)
From 5120 to 5250 MHz
50 dBm
From 50 kHz to 12.4 GHz (excluding 5000 to 5250 MHz) 35 dBm

MODULATION (Note 5, 6 and 7)

MAIN PATH FUNCTIONS
BEAM ANGLES
Azimuth $\pm 62^{\circ}$
High Rate Azimuth

$$
\pm 42^{\circ}
$$

Elevation

$$
-1.5^{\circ} \text { to } 29.5^{\circ}
$$

Flare

$$
-2^{\circ} \text { to } 10^{\circ}
$$

Back Azimuth

$$
\pm 42^{\circ}
$$

Angle Resolution $\pm 0.05^{\circ}$ steps
Angle Accuracy

Basic Data

All functions selectable on menu with selectable data values and parity

Auxiliary Data

All auxiliary data words selectable

BEAM SHAPE

Approximately $\sin x / x$ or $1 / 2 \sin x / x$ waveforms at $1 / 2$ width that fills time slot. Sidelobes for $1 / 2 \sin x / x$ are present on pulse side only.

BEAM WIDTH

Selectable to $0.5^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}, 5^{\circ}$

Accuracy

$$
\pm 10 \% \text { of setting }
$$

Beam Level

Adjustable relative to preamble

Range

-3.0 to $+13.0 d B$ (Note 6)

Resolution

1.0 dB steps

Accuracy

$$
\pm 1.0 \mathrm{~dB}
$$

Side Lobes

Relative to beam level
Level
$-20.0 \mathrm{~dB}, \pm 1.0 \mathrm{~dB}$
OCI Pulses (Right, Left, Rear)
Width
$100 \mathrm{~ms}, \pm 10 \mathrm{~ms}$
Level
Adjustable relative to preamble

Range

-4.0 to $+7.0 d B$
RESOLUTION
1.0 dB steps

ACCURACY
$\pm 1.0 \mathrm{~dB}$
DPSK MODULATION
Phase Shift
Logic Zero (0)
No transition
Logic One (1)

$$
180^{\circ}, \pm 10^{\circ}
$$

Amplitude Balance

$$
\pm 0.4 \mathrm{~dB}
$$

TRANSITION TIME
$<10 \mu \mathrm{~s}, 10 \%$ to 90%
MULTI-PATH FUNCTION
ANGLE
Selectable to maximum angle for selected function
ANGLE RESOLUTION
0.05° steps
ANGLE ACCURACY
$\pm 0.05^{\circ}$

BEAM SHAPE

Approximately $\sin x / x$ or $1 / 2 \sin x / x$ waveforms at $1 / 2$ width that fills time slot. Sidelobes for $1 / 2 \sin x / x$ are present on pulse side only.

BEAM WIDTH

Selectable to $0.5^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}, 5^{\circ}$

Accuracy

$\pm 10 \%$ of setting
Beam Level
Adjustable relative to preamble (Note 6, 8 and 10)

Range

-14.0 to $+13.0 d B$

Resolution

1.0 dB steps

Accuracy

$\pm 1.0 \mathrm{~dB},-3.0$ to +13.0 dB
$\pm 2.0 \mathrm{~dB},-14.0$ to -4.0 dB

SIDE LOBES

Relative to beam level
Level
$-20.0 \mathrm{~dB}, \pm 1.0 \mathrm{~dB}$
Main Path to Multi-path
$\pm 1.0 \mathrm{~dB}$ tracking error

FADE RATE

Frequency Range
Selectable 0.05, 1 and 1000 Hz

Accuracy

$$
\pm 1.0 \text { \% }
$$

Steps

Eight discrete steps that approximate a sine wave
Clearance Pulses (Note 9)

Position

Two pulses spaced equidistant from 0.0°

Angle Resolution

$\pm 0.05^{\circ}$
Angle Accuracy
$\pm 0.05^{\circ}$

Pulse Width

$50.0 \mu \mathrm{~s}, \quad \pm 5.0 \mu \mathrm{~s}$

AMPLITUDE

Range

-3.0 to $+13.0 d B$

Resolution

1.0 dB steps

Accuracy
$\pm 1.0 \mathrm{~dB}$

ADDITIONAL FUNCTIONS

AZ to EL RATIO

Selectable so Azimuth to Elevation function ratio is 0 or $-75 d B$

Accuracy

$\pm 2 d B$
Interference Modulation
Propeller Modulation
Frequency
Variable 1 to 199 Hz

Resolution

1.0 Hz steps

Accuracy

Duty Cycle
$-12 d B, \pm 2 d B$ applied for $15 \%, \pm 1 \%$

Sync
Not in sync with any function

6.75 HZ MODULATION

Frequency

$$
6.75 \mathrm{~Hz}
$$

Accuracy

$$
\pm 1 \%
$$

Level
Selectable $\pm 6.0 \mathrm{~dB}$ square wave modulation to main beam (Note 6 and 10)

Accuracy

$$
\pm 1.0 \mathrm{~dB}
$$

Sync
Not in sync with any function

MORSE CODE

Selection

Off, selectable or Continuous Tone

OSCILLOSCOPE SYNC

Selection

Selectable to occur at start of any function, basic or auxiliary data word

Amplitude

Positive TTL pulse approximately 14μ s wide.
Note: Sync control specifies to which function or data word the tests in Table 1 apply.
FUNCTION APPLICATION

P PARITY	CONTROLS PREAMBLE PARITY
6.75 Hz	ENABLES OR DISABLES 6.75 Hz MODULATION
UPDATE	CONTROLS \% UPDATE RATE
FADE RATE	CONTROLS FADE RATE (APPLIED TO MULTI-PATH
	BEAM)
SYMMETRY	CONTROLS BEAM SYMMETRY
PROP MOD	CONTROLS PROPELLER MODULATION
	FREQUENCY
PFE	MEASUREMENT OF PATH FOLLOWING ERROR
CMN	MEASUREMENT OF CONTROL MOTION NOISE

Table 1-Oscilloscope Sync

FUNCTION UPDATE RATE

Selection

$100 \%, 75 \%, 55 \%, 45 \%, 25 \%$ and 0%

Accuracy

$\pm 3.9 \%$		
FUNCTION	UPDATE RATE	AVERAGE RATE OVER 10
SECONDS		
AZ	100%	$13.0 \pm 0.5 \mathrm{~Hz}$
HiAZ	100%	$39.0 \pm 1.5 \mathrm{~Hz}$
BAZ	100%	$6.5 \pm 0.25 \mathrm{~Hz}$
EL	100%	$39.0 \pm 1.5 \mathrm{~Hz}$

FUNCTION PREAMBLE PARITY

Selection

Function identified by Oscilloscope Sync selection is candidate to have its parity bits individually inverted to provide a change in parity.

SCANNING BEAM TIME SYMMETRY

Selection

0 (OFF), $\pm 60 \mu \mathrm{~s}$ in 1μ s steps referenced to proper timing from pre-

External Reference Input

Variable 9.999940 to 10.000060 MHz at 3.0 dBm nominal

ARINC 429 RECEIVER

Rates

12.5 and 100 kbps data rates

Format

Return to Zero (RZ)

Levels

Logic "1" = +5 to 10 V input, typical
Logic "0" $=-5$ to -10 V input, typical

Transitions

Rise and fall times $<1.5 \mu \mathrm{~s}$

GPIB

Conforms to IEEE-488-1978 Standard for Talker/Listener

POWER

AC

Voltage

103.5 to 240 VAC

Frequency

45.0 to 440 Hz

Power Consumption

85.0 W, maximum

Fuse Requirements

2.5 A, 250 V, Type F

DC

Voltage

11.0 to 30.0 VDC

Fuse Requirements

7.5 A, 32 V min., Type F

BATTERY

Time Out

10 minute time out circuit to prevent accidental discharge. Low voltage detect turns unit off prior to performance being affected.

Charge Cycle

At least 3 cycles or 30 minutes of charge life before recharge

ENVIRONMENTAL

Weight

22.7 kg (50 lbs.) Maximum

Dimension (with lid)

234.9 mm wide $\times 539.75 \mathrm{~mm}$ high $\times 355.6 \mathrm{~mm}$ deep
9.25 in. wide $\times 21.25$ in. high $\times 14.0$ in. deep

Operating Temperature

$+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

Storage Temperature

$-40^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$

REFERENCE NOTES

Note 1: Measured with 1000 Hz Fade Rate applied to Multi-path with Multi-path OFF, 14 dB Pad applied, and Main Path in CW, 0 dB modulation

Note 2: 0.2 to 0.4 dB variation in level at Fade Rate is normal operation and is due to residual component of Multi-path signal. 0.8 dB variation is normal for Multi-path signal at Multi-path $=0 \mathrm{~dB}$, Main Path $=0 F F$.
Note 3: $-105 \mathrm{dBc} / \mathrm{Hz}$ is approximately equal to -60 dBc in a 30 kHz bandwidth.

Note 4: Total spurious power should not exceed -15 dBc or -35 dBm at -20 dBm level setting from 50.0 kHz to 12.4 GHz .
Note 5: Angular range is limited to slightly less than maximum range for beam widths of 0.5° and 1.0° according to following table:

FUNCTION	RANGE 0.5	RANGE $\mathbf{1 . 0 ^ { \circ }}$
AZ	-61° to 61°	-61.95° to 61.95°
EL	-1.0° to 29.5°	-1.0° to 29.5°
BAZ	-41.75° to 41.75°	-41.75° to 41.75°
FL	-1° to 9°	-1° to 9°
HiAZ	-41° to 41°	-41.95° to 41.95°

Note 6: RF preamble level plus modulation level should not exceed - 10.0 dBm .

Note 7: Beam modulation level of $+6 d B$ above preamble is assumed unless specified.

Note 8: When clearance is selected, each pulse is individually selectable in amplitude.
Note 9: Selectable for $A Z$, HiAZ and BAZ functions only. Angular range is $\pm 1^{\circ}$ to $\pm 61^{\circ}$ for $A Z$ and $\pm 41^{\circ}$ for $H i A Z$ and $B A Z$.

Note 10: Combined modulation level in a given time slot not to exceed +15 dB relative to preamble. Includes main path and multipath +6.75 Hz modulation.

CHINA Beijing
Tel: [+86] (10) 646727612716
Fax: [+86] (10) 64672821
CHINA Shanghai
Tel: [+86] (21) 62828001
Fax: [+86] (21) 628288002

FINLAND

Tel: [+358] (9) 27095541
Fax: [+358] (9) 8042441

FRANCE

Tel: [+33] 160799600
Fax: [+33] 160776922

GERMANY
Tel: [+49] 8131 2926-0 Fax: [+49] 8131 2926-130 HONG KONG Tel: [+852] 28327988 Fax: [+852] 28345364 INDIA
Tel: [+91] 8051154501 Fax: [+91] 8051154502 KOREA
Tel: [+82] (2) 34242719 Fax: [+82] (2) 34248620

SCANDINAVIA
Tel: [+45] 96140045 Fax: [+45] 96140047 SPAIN
Tel: [+34] (91) 6401134 Fax: [+34] (91) 6400640 UK Burnham
Tel: [+44] (0) 1682604455
Fax: [+44] (0) 1682662017

UK Stevenage
Tel: $[+44]$ (0) 1438742200 Fax: [+44] (0) 1438727601 Freephone: 0800282388 USA
Tel: [+1] (316) 5224981
Fax: [+1] (316) 5221360 Toll Free: 8008352352

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

