

2400C Series Microwave Signal Generators10 MHz to 40 GHz

Low Phase Noise and Fast-Switching Speed in a Single Unit

2400C Series Microwave Signal Generator

Signal Generator Frequency Range

The 2400C series Microwave Signal Generators include four models covering 10 MHz to 40 GHz.

Model Number	Frequency Range	RF Output Connector
2408C	2 GHz to 8 GHz	Type-N (F)
2420C	2 GHz to 20 GHz	SMA (F)
2426C	2 GHz to 26.5 GHz	SMA (F)
2440C	2 GHz to 40 GHz	2.92 mm (F)

Available Options

Option	Description
17A	Add Internal and External Modulation Suite
17B	Add External Modulation Suite
18	Add 10 MHz to 2 GHz Frequency Range
22	Add Rear Panel RF Output Connector
23	Add Type-N RF Connector, for 2420C only
26A	Add 90 dB Mechanical Step Attenuator, for 2408C and 2420C models
26B	Add 90 dB Mechanical Step Attenuator, for 2426C model only
26C	Add 90 dB Mechanical Step Attenuator, for 2440C model only
27	Add 110 dB Electronic Step Attenuator, for 2408C model only
31	Add Switching Speed > 2 ms and Pulse Width > 100 ns
43	Add Analog Sweep
44	Replace Standard Front Panel with Blank Front Panel (Requires Option 22)
46	Add Rack Slide Kit
55X	Add Emulation Command Set (See ordering information for detail)

The new 2400C series now give you more options to configure the Microwave Signal Generator to your specific application, while still loaded with standard features such as high stability time base and high leveled output power with low harmonics.

Advanced Synthesizer Technology

The 2400C series Microwave Signal Generators provide state-of-the-art performance with fast switching speed and high output power without any compromise in signal purity. The 2400C series Microwave Signal Generators utilize Giga-tronics' patented Accumulator High Frequency Feedback (AHFF™) technology that delivers fast switching speed along with low phase noise performance of -74 dBc/Hz @ 100 Hz, -97 dBc/Hz @ 1 kHz and -93 dBc/Hz @ 10 kHz offset on a 10 GHz carrier frequency.

High Precision Power Output

The 2400C series Microwave Signal Generators, with standard high output power exceeding +14 dBm to 20 GHz, with low harmonics. In addition, a programmable step attenuator option is available that, along with high precision frequency compensated automatic level control (ALC), gives a dynamic range from +14 dBm to -100 dBm, and a new electronic step attenuator option with 2408C model.

High Stability Time Base and Stable Phase Tracking

A standard ovenized crystal oscillator in the 2400C Series offers a high stability time base to satisfy most stringent requirements in terms of time base aging and accuracy. Furthermore, the 2400C accepts both a 10 MHz and 100 MHz external reference that automatically disconnects the internal 10 MHz reference oscillator and phase locks it with the internal 100 MHz reference oscillator. In addition, the ability to share a reference frequency between two sources at 100 MHz rather than 10 MHz leads to much greater stability (time and temperature) for phase tracking multiple synthesizers.

Digital High Rate Sweep Modes

The 2400C Series is loaded with digital high rate sweep modes that allow the output frequency to sweep linearly between a pre-determined start and stop frequency. In addition, the 2400C Series signal generator interfaces seamlessly with the Giga-tronics 8003 Precision Scalar Analyzer for swept stimulus/response measurements such as gain, isolation, and return loss of components such as amplifiers, isolators/circulators, filters, converters etc.

Faster to Program

Every 2400C series Microwave Signal Generator comes with Giga-tronics Automation Xpress, a PC based software package designed for enhanced user interface and automatic test systems. Automation Xpress leverages industry leading software applications, familiar Windows drop-down menus, and other functions to perform tasks. Using Windows-based applications, such as Microsoft™ Excel or Notepad, engineers can create, manage, and download complex lists in seconds.

Fast Frequency Switching

The fast frequency switching of the Giga-tronics 2400C series Microwave Signal Generators pays dividends in any test environment where large amounts of data are collected. Regardless of the complexity of your application, such as antenna characterization or RFIC testing, the 2400C Series will quickly prove itself as your best test investment by providing fast settling time for both amplitude and frequency.

Giga-tronics offers several microwave power amplifiers as accessories to our microwave signal generators for applications requiring power up to 10 Watts to 10 GHz, 5 Watts to 20 GHz and 1/2 Watt to 40 GHz.

Automation Xpress Interface

The 2400C Series offers unmatched frequency and power switching in list mode. However, this approach may not be suitable in some remote programming situations. For these cases, Automation Xpress offers fast remote operation that goes beyond just fast frequency switching. Automation Xpress, ensures unmatched CW frequency and power switching performance, providing fast and flexible data exchange rates for faster testing and more device throughput.

Simpler to Operate

The 2400C Series is designed to streamline user navigation by moving complex testing functions from the front panel to the desktop PC. The result is a ground breaking system that reduces training time, speeds workflow, and dramatically boosts end-user productivity. To enhance user navigation, we minimized the number of soft screens and menu layers, simplifying content and improving operational performance. That means you will spend less time scrolling through menus and more time getting your work done.

Optimized for ATE

With the 2400C Series, ATE integrators now have a system source specifically designed to match their unique performance needs. The 2400C Series works seamlessly with other instruments. It includes hardware triggering and synchronization signals with programmable delays to allow coordination with other test products in your system. Replacing older industry-standard microwave synthesizers can also be accommodated, making the 2400C Series an ideal choice for upgrading older systems.

Compatibility

The Giga-tronics 2500 series has full offers command compatibility with the 2400 series and previous generation signal generators from Giga-tronics allowing easy upgrading to the latest technology. The 2500 series signal generators have also been successfully deployed in upgrade situations where the original generator was from another manufacturer by using the optional command set emulation available for many popular legacy signal generators. Contact the factory for more information.

Two Year Calibration Cycle

A two-year calibration cycle significantly reduces your calibration downtime.

2400C Series Technical Specifications

Frequency

David illustration	2408C	10 MHz to 8 GHz	
	2420C	10 MHz to 20 GHz	
Range (with option 18)	2426C	10 MHz to 26.5 GHz	
	2440C	10 MHz to 40 GHz	
Frequency Accuracy	Same as time base		
Frequency Resolution	0.001 Hz		
Power Slope	0 to 0.5 dB/GHz		

Frequency Stability

riequency stability			
Literat Before a Color	10 MHz	TTL level into 50 Ω	
Internal Reference Output	100 MHz	$>$ +5 dBm into 50 Ω	
Aging Rate ¹	< 5 x 10 ⁻¹⁰ /day		
Temperature Stability ²	< ± 2.5 x 10 ⁻⁸		
	Frequency	10 MHz or 100 MHz	
External Reference Frequency Input	Frequency Deviation	± 1 ppm	
external Reference Frequency Input	Recommended Input Level	$>$ -5 dBm into 50 Ω for 10 MHz	
		> +5 dBm to < +8 dBm into 50 Ω for 100 MHz	
Reference Tuning	Voltage Range	0 to 10 V	
	Sensitivity	2 ppm/Volt nominal	
Lock/Level Indicator (CW Mode Only)	Sync Out = +5 V (TTL High)		

Frequency Bands

Band	Frequency	N
1	≥ 10 to ≤ 15.625 MHz	512
2	> 15.625 to ≤ 31 MHz	256
3	> 31 to ≤ 63 MHz	128
4	> 63 to ≤ 125 MHz	64
5	> 125 to ≤ 250 MHz	32
6	> 250 to ≤ 500 MHz	16
7	> 500 to ≤ 1000 MHz	8
8	> 1 to ≤ 2 GHz	4
9	> 2 to ≤ 4 GHz	2
10	> 4 to ≤ 8 GHz	1
11	> 8 to ≤ 16 GHz	1/2
12	> 16 to ≤ 32 GHz	1/4
13	> 32 to ≤ 40 GHz	1/8

After 30 days
 Temperature stability over operating range of 0°C to +55°C after 30 days

Maximum Leveled Output Power in dBm

Specification applies over 0 °C to 35 °C range and degrades < 2 dB from 35 °C to 55 °C

Number in () is for instruments with step attenuator option 26

Model	0.01 to 2 GHz	2 to 8 GHz	8 to 20 GHz	20 to 26.5 GHz	26.5 to 40 GHz
2408C	14 (13)	14 (13)	N/A	N/A	N/A
2420C	14 (13)	14 (13)	14 (12)	N/A	N/A
2426C	14 (13)	12 (11)	12 (10)	10 (8)	N/A
2440C	14 (13)	12 (11)	12 (10)	10 (8)	10 (7.5)
2408C (option 27)	7	7	N/A	N/A	N/A

Minimum Leveled Output Power in dBm

Specification applies over 0 °C to 35 °C range and degrades < 2 dB from 35 °C to 55 °C

Number in () is for instruments with step attenuator option 26

Model	0.01 to 2 GHz	2 to 8 GHz	8 to 20 GHz	20 to 26.5 GHz	26.5 to 40 GHz
2408C	-10 (-100)	-10 (-100)	N/A	N/A	N/A
2420C	-10 (-100)	-10 (-100)	-10 (-100)	N/A	N/A
2426C	-10 (-100)	-10 (-100)	-10 (-100)	-10 (-100)	N/A
2440C	-10 (-100)	-10 (-100)	-10 (-100)	-10 (-100)	-10 (-100)
2408C (option 27)	(-120)	(-120)	N/A	N/A	N/A

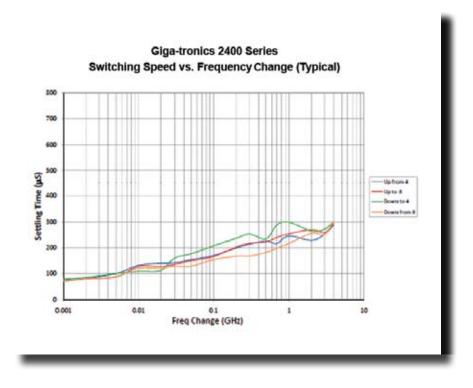
Other Output Power Specifications

Power Offset (CW Mode)	0 to 10 dB
Power Resolution	0.05 dB
Temperature Stability	0.025 dB/°C
Output Source Match (ALC on)	< 2.0:1 to 40 GHz

RF Power Level Accuracy (dB)

Specifications apply over 15 °C to 35 °C range and degrades < 0.1 dB/°C outside that range

Frequency Range	> +5 dBm	+5 to > -10 dBm	-10 to -90 dBm ⁴
10 MHz to 20 GHz	± 0.85	± 0.7	± 1.2
20 to 40 GHz	± 1.05	± 0.9	± 1.5
10 MHz to 8 GHz (with option 27)	± 1.05	± 0.9	± 1.5


 $^{^4}$ Specification does not apply without a step attenuator. Level accuracy at minimum leveled power typically less than ± 1.5 dB without a step attenuator

Frequency and Power Sweep

Ramp Frequency Sweep	Full Frequency Coverage	
Frequency Sweep Modes	Start/Stop or Center/Span	
Frequency Sweep Resolution	401, 801, 1601 points	
Option 43 Analog Sweep	Option 43 provides very high resolution sweep	
Ramp Power Sweep	0 to 25 dB	
Power Slope (CW Mode, List Mode)	0 to 0.5 dB/GHz	
Ramp Output	0 to 10V and 0.5 V/GHz (2408C, 2420C) or 0.25 V/GHz (2426C, 2440C)	
Z-Axis Blanking	+5V (Positive Only)	
Sweep Time⁵	100 ms to 200 sec	
Markers	5 intensity markers and 5 amplitude markers	

Remote Programming

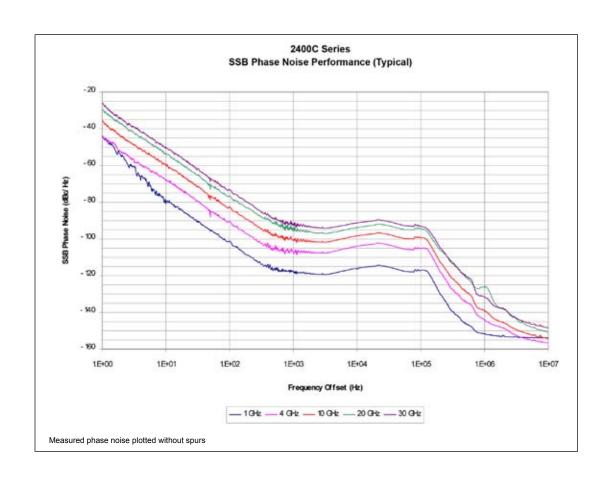
	·		
Hardware Interface	GPIB (IEEE 488.2), RS-232, USB 2.0 (full speed, not high speed), Ethernet		
Software Interface (Standard)	SCPI, GT12000, GT9000, GT9000, GT6000, Automation Xpress Interface		
		AXI	SCPI
Execution Speed (IEEE 488.2)	CW Switching (typ)	2.5 ms	28 ms
	4000 Point List Download (typ)	20 sec	28 sec
Automation Xpress	20 MB Disk Space		
Remote Interface	GPIB (IEEE 488.2, 1987), RS-232, USB 2.0, Ethernet		

⁵ Sweep Rate must be <500 MHz/msec

List Mode

Number of Points	4000		
Frequency Settling ⁶	< 350 μs for ΔF ≤ 500 MHz		
Amplitude Settling ⁷	< 500 μs		
Digital Course	Trigger Modes	External, GPIB GET, Software	
Digital Sweep	Sweep Modes	Continuous, Single Step, Single Sweep	
Show Times	Standard	150 μs to 1 sec	
Step Time	Option 31	2 ms to 1 sec	
Sync Out Delay ⁸	50 μs to 10 ms		

Spectral Purity


	Maximum leveled output power or +6 dBm, whichever is lower. Specification for harmonics above instrument frequency range are typical		
Harmonics	10 MHz to 2 GHz	-50 dBc	
	>2 GHz to 20.2GHz	-50 dBc	
	>20.2 GHz to 40 GHz	-50 dBc	
	Maximum leveled output power or +6 dBm, frequency range are typical	whichever is lower. Specification for Sub-harmonics above instrument	
Sub-Harmonics	10 MHz to 2 GHz	-80 dBc	
	> 2 to 20.2 GHz	-50 dBc	
	> 20.2 to 40 GHz	-50 dBc	
	Specification is for offsets > 300 Hz. Specification is -45 dBc + 20 log(1/N) dBc typical for offsets < 300 Hz		
	10 MHz to 8 GHz	-56 dBc, -58 dBc nominal	
Spurious	> 8 to 16 GHz	-50 dBc, -52 dBc nominal	
	> 16 to 32 GHz	-44 dBc, -46 dBc nominal	
	> 32 to 40 GHz	-38 dBc, -40 dBc nominal	
	50 Hz to 15 kHz Bandwidth		
Desidual FAA (turnisal)	10 MHz to 16 GHz	< 40 Hz	
Residual FM (typical)	> 16 to 32 GHz	< 80 Hz	
	> 32 to 40 GHz	< 120 Hz	
	Offset > 5 MHz at maximum leveled power		
ABABI (1. d.	10 MHz to 2 GHz	-130 dBm/Hz	
AM Noise (typical)	> 2 to 20.2 GHz	-145 dBm/Hz	
	> 20.2 to 40 GHz	-132 dBm/Hz	

 $^{^{\}rm 6}$ Time for frequency to settle within 50 kHz of final value after a frequency switch

⁷ Time for amplitude to settle within 0.1 dB of final value after an amplitude switch ⁸ Delay is specified from edge of trigger pulse

SSB Phase Noise - Specifications

Carrier	Offset from Carrier (dBc/Hz)				
CW (GHz)	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
1.0	-90	-113	-112	-113	-150
4.0	-82	-103	-100	-101	-140
10.0	-74	-97	-93	-94	-136
20.0	-68	-91	-87	-88	-122
30.0	-64	-89	-87	-89	-120

Frequency Modulation⁹

(Specification applies for frequencies above 10 MHz)

	Modulation Index	Deviation Limited
	Rate (3 dB bandwidth)	DC to 750 kHz
Low Rate	Peak Deviation	1.5 MHz/N
Low Rate	Accuracy	± 5% at 5 kHz rate with 1.0 V peak input, 12.024 kHz/Vpk sensitivity
	Input Range	± 1V
	Input Impedance	50 Ω
	Modulation Index	< 25/N
	Rate (3 dB bandwidth)	750 kHz to 5 MHz
High Date	Peak Deviation	15 MHz/N
High Rate	Accuracy	± 5% at 1 MHz rate with 1.0 V peak input, 2.4048 MHz/Vpk sensitivity
	Input Range	± 1V
	Input Impedance	50 Ω

Phase Modulation

(Specification applies for frequencies above 10 MHz)

Rate (3 dB Bandwidth)	100 Hz to 100 kHz
Peak Deviation	10 rad-pk/N
Accuracy	± 5% at 1 kHz rate with 1.0 V peak input, 3.83 rad/Vpk sensitivity

Pulse Modulation

(Specification applies for frequencies above 500 MHz)

Standard Operating Modes	Internal, External	Internal, External	
On/Off Ratio	> 80 dB minimum, 90 dB nominal	> 80 dB minimum, 90 dB nominal	
Diag/Fall Times	0.5 to 20 GHz	< 10 ns max, 3 ns typ.	
Rise/Fall Times	20 to 40 GHz	< 25 ns max, 10 ns typ.	
Minimum Leveled Pulse Width ¹⁰	Internal / External	100 ns	
Minimum Unleveled Pulse Width	Open-Loop Calibrated	25 ns	
	Pulse Width > 350 ns	± 0.5 dB	
Level Accuracy ¹¹	Pulse Width > 100 - 350 ns	+1.5 / - 0.5 dB	
	Pulse Width > 25 - 100 ns	+2.5 / - 0.5 dB	
	Leveled	< 3 MHz	
PRF (50% Duty Cycle)	Open-Loop Calibrated	< 10 MHz	
	Video Food Through	0.5 to 2 GHz: < 5%	
P. L. Philip	Video Feed Through	2 to 40 GHz: < 1%	
Pulse Fidelity	Compression	< ± 5 ns	
	RF Delay	< 75 ns	
Input	Sensitivity	TTL levels (polarity selectable)	

⁹ Settling time not specified with FM turned on
10 Two modes for pulse modulation exist. In one mode the ALC is always "ON" and automatically maintains the pulse amplitude accuracy for pulse widths as narrow as 350 ns over the full amplitude range, or as narrow as 100 ns at maximum leveled output power. The other mode provides accurate power output for pulses as low as 10 ns. Whenever RF is turned on, or the frequency or power settings are changed, the ALC turns on the RF on for 1 millisecond to calibrate the output power. After this initial calibration leveling is completed, the RF is turned off and pulse operation resumes. Also in this mode the ALC automatically reengages leveling whenever the pulse width exceeds 1 µs. This provides automatic closed loop leveling for pulse widths greater than 1 µs while still providing accurate output power for pulse widths as low as 10 ns

¹¹ Duty Cycle must be >0.01%

Amplitude Modulation¹²

(Specification applies for frequencies above 10 MHz)

Depth 0 to 90% (Level = 0 dBm)			
Rate (3 dB Bandwidth at carrier level of 0 dBm)	DC to 100 kHz (Depth = 50%)		
Sensitivity	0 to 95% per Volt, selectable		
Accuracy	± 10% of setting at 1 kHz rate		
	Range	± 1V	
Input	Impedance	600 Ω	

Internal Function Generator

	Waveforms	Sine, Square, Triangle, Ramp, Gaussian Noise
	Rate	0.01 Hz to 100 kHz, all waveforms
AM Modulation Source	Resolution	0.01 Hz
	Accuracy	Same as time base
	AM Out	2 V peak to peak into 10 $k\Omega$ load
	Waveforms	Sine, Square, Triangle, Ramp
	Rate	0.01 Hz to 1 MHz, all waveforms
FM Modulation and Phase Modulation Source	Resolution	0.01 Hz
	Accuracy	Same as time base
	FM Out	2 V peak to peak into 10 $k\Omega$ load
Pulse Modulation	Modes	Continuous, Gated, Triggered, Pulse Burst (up to 300 pulses)
	Width	10 ns to 10 ms
	Pulse Repetition	0.2 μs to 1 sec
Pulse Modulation Source	Sync. Out Delay	0 to 10 ms
Pulse Modulation Source	Resolution	10 ns
	Accuracy	± 2% of setting or ± 15 ns, whichever is greater. ± 0.08% nominal
	Pulse Mod Out	2 V into 50 Ω

Physical

Environmental	MIL-PRF-28800F. Class 3
Safety	EN61010
Weight	< 35 lbs (15.9 kg)
Emissions	EN61326
Rack Height	3U (5.25 inches (133.4 mm)
Dimensions (with rack handles)	19 inches (W) x 21 inches (D) x 5.2 inches (H) 483 mm (W) x 534 mm (D) x 312 mm (H)
Power	90 to 253 VAC, 47 to 440 Hz 300 Watts typical, 350 Watts max.

¹² Modulation peaks must be less than maximum available power

2400C Series Rear Panel I/O Connector Descriptions

Connector Label	Specifications	Connector Type
EXT ALC	External ALC Input	BNC
RF OUT	Rear Panel Output, option 22 only	SMA, N, 2.92 mm
FM/φM OUT	Internal modulation generator output; 2 Vp-p into 10 $k\Omega$	BNC
PULSE OUT	A +4 V video representation of the pulsed RF output signal	BNC
AM OUT	Internal modulation generator output; 2 Vp-p into 10 $k\Omega$	BNC
PM SYNC OUT	Synchronization output pulse width > 75 ns width	BNC
FM/ ϕ M IN	50 Ω, +/- 1 V maximum	BNC
AM IN	600 Ω	BNC
PULSE IN/PM TRIG IN	$50~\Omega$, TTL levels, polarity selectable	BNC
LOCK/LEVEL	+5 V indicator for phase/level lock for CW mode and in list mode	BNC
REF TUNE	0 to +10 V	BNC
SYNC OUT	+5 V output pulse	BNC
TRIGGER IN	Used to trigger a list. Accepts a TTL level signal of > 50 ns width	BNC
BLANKING	+5 V output indicator for band crossing, filter switching, and retraces	BNC
RAMP OUT	0 to 10 V	BNC
STOP SWP IN/OUT	+5 V, 2 k Ω , active low	BNC
V/GHz	0.5 V/GHz (2408C, 2420C) or 0.25 V/GHz (2426C, 2440C)	BNC
100 MHz OUT	+5 dBm typical, 50 Ω	BNC
10 MHz OUT	2 Vp-p, 50 Ω	BNC
EXT REF IN	10 MHz \pm 50 Hz (> -5 dBm), 100 MHz \pm 500 Hz (> +5 dBm to +8 dBm), 50 Ω	BNC
GPIB	A 24-pin IEEE STD 488.2 connector for control of the instrument during remote operation using GPIB	Type 57
RS-232	A DB-9 connector for control of the instrument during remote operation using RS-232 serial communications	DB-9
USB	USB 2.0 (Device) for control of the instrument during remote operation using USB communications	USB type B
LAN	100 Base T Ethernet for control of the instrument during remote operation using Ethernet	RJ45
AC POWER INPUT	90 to 253 VAC, auto-sensing, 47 Hz to 440 Hz	IEC Power Line

Included Accessories

The 2400C series Microwave Signal Generators include the following items: Automation Express (AX) software and Operation Manual (on CD-ROM), AC Power Cord, Rack Mount Brackets and USB to DB-9 Adapter Cable (for RS232 serial communication).

Ordering Information

Giga-tronics has a network of RF and Microwave instrumentation sales engineers and a staff of factory support personnel to help you find the best, most economical instrument for your specific applications. In addition to helping you select the best instrument for your needs, our staff can provide quotations, assist you in placing orders, and do everything necessary to ensure that your business transactions with Giga-tronics are handled efficiently.

Model Number	Frequency Range
2408C	2 GHz to 8 GHz
2420C	2 GHz to 20 GHz
2426C	2 GHz to 26.5 GHz
2440C	2 GHz to 40 GHz

Available Options and Accessories

Option	Description
17A	Add Internal and External Modulation Suite
17B	Add External Modulation Suite
18	Add 10 MHz to 2 GHz Frequency Range
22	Add Rear Panel RF Output Connector
23	Add Type-N RF Connector, for 2420C only
26A	Add 90 dB Mechanical Step Attenuator, for 2408C and 2420C models
26B	Add 90 dB Mechanical Step Attenuator, for 2426C model only
26C	Add 90 dB Mechanical Step Attenuator, for 2440C model only
27	Add 110 dB Electronic Step Attenuator, for 2408C model only
31	Add Switching Speed > 2 ms and Pulse Width > 100 ns
43	Add Analog Sweep
44	Replace Standard Front Panel with Blank Front Panel (Requires Option 22)
46	Add Rack Slide Kit
55A	HP 8370 Emulation Command Set
55B	HP 8340 Emulation Command Set
55C	HP 8673C/D Emulation Command Set
55D	HP 8663A Emulation Command Set
55E	Systron Donner 1720 Emulation Command Set
55F	Wavetek 90X Emulation Command Set
55G	HP 8350 Emulation Command Set
55H	HP 8360 Emulation Command Set

Giga-tronics Support Services

At Giga-tronics, we understand the challenges you face. Our support services begin from the moment you call us. We help you achieve both top-line growth and bottom-line efficiencies by working to identify your precise needs and implement smart and result orientated solutions. We believe and commit ourselves in providing you with more than our superior test solutions. For technical support, contact:

Tel: 1-800-726-GIGA (4442) or (925) 328-4669 Email: support@gigatronics.com

Updates

All data is subject to change without notice. For the latest information on Giga-tronics products and applications, please visit:

http://www.gigatronics.com

