12000A
 Microwave SYNTHESIZER

ORDERING INFORMATION MODEL NUMBERS AND FREQUENCY RANGES:

CW Generator Step Sweep, N o Modulation	Signal Generator Step Sweep, Modulation	Step and Ramp Sweep, Modulation	Frequency Range
12420 A	12520 A	12720 A	10 MHz to 20 GHz
12422 A	12522 A	12722 A	2 GHz to 20 GHz
12408 A	12508 A	12708 A	10 MHz to 8 GHz
12428 A	12528 A	12728 A	2 GHz to 8 GHz

AVAILABLE OPTIONS AND ACCESSORIES:

Option 01: Rack ears with slides
0 ption 02: Rack mount without track slides
0 ption 20: Provides +20 dBm output power, .01 to 20 GHz
O ption 22: Moves the RF O utput Connector from the instrument's front panel to its rear panel
Option 23:Type N output connector
Option 24: Provides built-in function generators for generating AM, FM, and pulse
O ption 26: Provides a built-in 110 dB attenuator (in 10 dB steps)
0 ption 36: Provides 1 kHz resolution throughout the frequency range
Option 29: 60 dB SCAN modulation
A011: Ruggedized C arrying C ase

CW OPERATION

Range: 0.01 to $8 \mathrm{GHz}, 2$ to $8 \mathrm{GHz}, 01$ to 20 GHz , and 2 to 20 GHz
Resolution: 0.1 Hz (Standard), 1 kHz (0 ption 36)
Accuracy and Stability: Identical to time base oscillator
Time Base (Internal): 10 MHz
Aging Rate: $<5 \times 10^{-10} /$ day after 72 hours of continuous oven operation
Temperature Stability: $< \pm 2 \times 10^{-10} /{ }^{\circ} \mathrm{C}\left(0\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
Time Base (External): 5 or $10 \mathrm{MHz}\left(\pm 1 \times 10^{-6}\right.$ or better) 0.5 to 5 Vpp into 100Ω (Nominal)
Switching Time List Mode: <500 $\mu \mathrm{s}$ to within I kHz of set frequency
SwitchingTime CW Mode: $<35 \mathrm{~ms}$ to within I kHz of set frequency (includes IEEE overhead)
Residual FM During Switching: (refer to Frequency Modulation Table, Wide Mode Residual FM column)

RF OUTPUT (CW)

Maximum Leveled O utput (0 to $35^{\circ} \mathrm{C}$):

Frequency (GHz)	Output Power (dBm)	Option 20 (dBm)	Option 26 (dBm)
0.01 to 2.0	+15	+20	+14
>2 to <8.0	+15	+20	+15
8.0 to 15.0	+15	+20	+13
>15.0 to 20.0	+15	+20	+12

Incremental Level Range: - 20 (typ) to +25 dBm
Resolution: 0.01 dB , entry and display
Minimum Calibrated 0 utput Level: -10 dBm; -120 dBm (with 0 ption 26)
RF $0 \mathrm{ff}:$ Attenuates the output to $<-140 \mathrm{dBm}$ at the output connector
Flatness ($25^{\circ} \pm 10^{\circ} \mathrm{C}$) (Internally leveled, CW, or frequency step or ramp mode): $\pm 0.5 \mathrm{~dB}$ (-10 dBm to maximum specified power); add $\pm 0.1 \mathrm{~dB} / 10 \mathrm{~dB}$ (with 0 ption 26): $\pm 2.5 \mathrm{~dB}$ (with 0 ption 20)
Accuracy: add 0.2 dB to flatness
Temperature Coefficient: - $025 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
Maximum Slope of Level Variation: $<.5 \mathrm{~dB} / \mathrm{MHz}$
0 utput SwitchingTime: $<500 \mu \mathrm{~s} ; 20 \mathrm{~ms}$ with attenuator change (0 ption 26)
O utput Impedance: 50Ω, nominal
O utput SW R: <2.0:I
Level Drift: $<0.05 \mathrm{~dB} /$ hour; max $0.1 \mathrm{~dB} / 24$ hours.

SPECTRAL PURITY

Harmonics:

Frequency (GHz$)$	Standard $(\mathrm{at}+6 \mathrm{dBm})$ dBc	With Option 20 $(\mathrm{at}+20 \mathrm{dBm})$ dBc
0.01 to 0.10	-30	-5
>0.10 to 2	-50	-20
>2 to 20	-55	-20

Subharmonics: N one, . $01-2 \mathrm{GHz} ;<-55 \mathrm{dBc}>2 \mathrm{GHz}$
N onharmonics(>300 Hz offset): <-60 dBc (0.01 to 16 GHz);
$<-55 \mathrm{dBc}$ (>16 to 20 GHz)
SSB Phase Noise ($\mathrm{dBc} / \mathrm{Hz}, \mathrm{CW}$ Mode):

Frequency (CHz)	$\mathbf{1 0 0 ~ H z}$	$\mathbf{1 ~ k H z}$	$\mathbf{1 0 ~ k H z}$	$\mathbf{1 0 0} \mathbf{~ k H z}$	$\mathbf{1 ~ M H z}$
0.25	-101	-101	-109	-122	-129
0.5	-95	-95	-103	-122	-124
2.0	-87	-92	-94	-120	-125
4.0	-81	-86	-88	-110	-130
6.0	-81	-84	-85	-110	-130
8.0	-75	-80	-82	-105	-130
10.0	-75	-80	-82	-105	-125
18.0	-68	-75	-75	-97	-120
20.0	-68	-75	-75	-97	-120

Residual FM (Hz,rms; CW Mode):

Frequency Range (GHz)	Post Detection Bandwidth $\mathbf{3 0 0} \mathbf{~ H z ~ t o ~} \mathbf{3} \mathbf{~ k H z}$	
<2	Decreases by $\mathbf{1 / 2} \mathbf{~} \mathbf{~ p e r}$ oct	Decreases by $\mathbf{1 / 2}$ per oct
2 to <4	<6	<35
4 to <8	<12	<70
8 to <16	<24	<140
16 to 20	<32	<200

AM N oise (5 MHz offset): <-I $30 \mathrm{dBm} / \mathrm{Hz}$ (0.0I to 2 GHz); $<-145 \mathrm{dBm} / \mathrm{Hz}$ (>2 GHz)

RAMP FREQUENCY SWEEP (I2700A Series)

Linear continuous sweep, self-generated within the instrument, may be operated simultaneously with step power sweep.

Range: Minimum frequency of instrument (FA) to maximum frequency of instrument (FB), up or down in frequency
Minimum Sweep W idth: 100 Hz ($1 \mathrm{MHz}, 0$ ption 36)
Sweep Time (any sweep mode): 1 ms to 200 s
Sweep Time Resolution: $10 \mu \mathrm{~s}$
Minimum Sweep Rate: $100 \mathrm{kHz} / \mathrm{sec}$.
Maximum Sweep Speed: $8 \mathrm{~ms} / 0 \mathrm{ctave}$
Band Crossing D ead Time: $<400 \mu \mathrm{~s}$. Filter crossing: 200 ns (sweep not stopped)
Sweep W idth Resolution: 0.1 Hz ($1 \mathrm{kHz}, 0$ ption 36)
Start, Stop, Halted Frequency Accuracy: Phase locked to time base
Sweep Linearity (Relative to a linear RAMP OUT voltage, sweep
time $\geq 100 \mathrm{~ms},<100 \mathrm{sec}$, any sweep mode): $<0.03 \%$ of sweep width
Sweep Modes:
START/STO P (FA $\leq[F 1 \neq F 2] \leq F B)$: Sweeps up or down from a preset start frequency (F1) to a preset stop frequency (F2)
START/ Δ (FA $\leq[F 1 \pm \Delta F] \leq F B)$: Sweeps up or down from a preset start frequency (F1) through a preset sweep width ($\Delta \mathrm{F}$)
$C T R / \Delta(F A \leq[C F \pm(\Delta F / 2)] \leq F B)$: Sweeps up or down through a preset sweep width $(\Delta \mathrm{F})$ centered symmetrically about a preset center frequency (CF)
$\Delta M K R(F A \leq[M x \neq M y] \leq F B)$: Sweeps up or down from any preset marker (Mx) to any other preset marker (My)

Sweep Functions:
AUTO : Continuous recycle of preset sweep
SIN GLE:A single cycle of preset sweep initiated by manual operation of the front panel push-button or reception of the corresponding GPIB command
EXT:A single cycle of preset sweep initiated by each trigger from an external source
Frequency Markers (Step and Ramp frequency sweep):
Twelve intensity, video, and/or amplitude markers, individually selected from either the front panel or via the GPIB
Resolution: Sweep width/4,000
A ccuracy: Same as sweep linearity except the marker may vary ± 25 mV relative to the linear 0 to +10 V RAMP 0 UT
Amplitude markers:A -10 to 10 dB change in RF output during analog frequency sweep
Video markers:TTL level output or $\pm 5 \mathrm{~V}$
Intensity markers: Provides a timed dwell of frequency sweep

STEP FREQUENCY SWEEP

Range: Min. frequency of instrument (FA) to max. frequency of instrument (FB)
Step Size:A ny increment within the instrument's frequency resolution
Dwell Time: May be set in 1 ms increments from approx. 1 ms to 200 s
Setup time/step: $200 \mu \mathrm{~s}$
Memory: Up to 30,000 frequency points and/or 100 list tables, depending on available dynamic memory
Accuracy and Stability: Same as in CW when locked at each step during dwell time
Modes:
START/STO P (FA $\leq[F 1 \neq F 2] \leq F B$): Sweeps up or down from a preset start frequency (F1) to a preset stop frequency (F2)
START/ Δ (FA $\leq[F 1 \pm \Delta F] \leq F B)$: Sweeps up or down from a preset start frequency (F1) through a preset sweep width ($\Delta \mathrm{F}$)
$C T R / \Delta(F A \leq[C F \pm(\Delta F / 2)] \leq F B)$: Sweeps up or down through a preset sweep width $(\Delta \mathrm{F})$ centered symmetrically about a preset center frequency (CF)
START/STEPS (FA $\leq[F 1 \pm$ (Step Size X N umber of Steps) $] \leq$ FB):
Sweeps up or down from a preset start frequency (F1) through a preset number of frequency steps
Functions:
AUTO : Continuous recycle of preset sweep
SIN GLE:A single cycle of preset sweep or (with stop activated) a single preset step, initiated by manual operation of the front panel push-button or reception of the corresponding GPIB command
EXT:A single cycle of preset sweep, initiated by each trigger from an external source
EX T STEP:A single step of a preset sweep initiated by each trigger from an external source

RAMP POWER SWEEP

Continuous sweep, self-generated within the instrument. May be o perated simultaneously with step frequency sweep.
Range: - 10 dBm (LA) to max. power (LB) up or down (-120 dBm to max. power with opt. 26)
Sweep Time (Any Sweep Mode): 2 ms to 200 s in five ranges Minimum sweep time is determined by the sweep width and the maximum sweep speed
Minimum Sweep W idth: . 01 dB
Maximum Sweep Speed: $1 \mathrm{~dB} / \mathrm{ms}$

Range	Resolution
2.0 to 20.0 ms	$10.0 \mu \mathrm{~s}$
20.0 to 200.0 ms	$100.0 \mu \mathrm{~s}$
200 ms to 2.0 s	1.0 ms
2.0 to 20.0 s	10.0 ms
20.0 to 200.0 s	100.0 ms

Sweep Level Resolution (any sweep mode): 0.01 dB
Start Level Accuracy (any sweep mode): Same as CW Sweep Level Linearity (any sweep mode): $\pm 0.25 \mathrm{~dB}$

Sweep Modes:
START/STO P (LA $\leq[L 1 \neq \mathrm{L} 2] \leq \mathrm{LB})$: Sweeps up or down from a preset start level (L1) to a preset stop level (L2)
START/ Δ (LA $\leq[L 1 \pm \Delta \mathrm{L}] \leq \mathrm{LB})$: Sweeps up or down from a preset start level (L1) through a preset sweep width ($\Delta \mathrm{L}$)
$C T R / \Delta(L A \leq[C L \pm(\Delta L / 2)] \leq L B)$: Sweeps up or down through a preset sweep width ($\Delta \mathrm{L}$) centered symmetrically about a preset center level (CL)
Sweep Functions:
AUTO : Continuous recycle of preset sweep
SIN G LE: A single cycle of preset sweep initiated by manual operation of the front panel push-button or reception of the corresponding GPIB command
EXT: A single cycle of preset sweep initiated by each trigger from an external source

STEP POWER SWEEP

Range:Minimum level of instrument (LA) to maximum level of instrument (LB)
Step Size:A ny increment within the instrument's level resolution
Dwell Time: May be set in 1 ms increments from approximately 1 ms to 200 s Setup time/step: 100μ s typical
Accuracy and Stability: Same as in CW when locked at each step during dwell time
Sweep Modes:
START/STO P (LA $\leq[L 1 \neq \mathrm{L} 2] \leq \mathrm{LB})$: Sweeps up or down from a preset start level (L1) to a preset stop level (L2)
START/ Δ (LA $\leq[L 1 \pm \Delta \mathrm{L}] \leq \mathrm{LB})$: Sweeps up or down from a preset start level (L1) through a preset sweep width ($\Delta \mathrm{L}$)
CTR/ $\Delta(\mathrm{LA} \leq[C L \pm(\Delta L / 2)] \leq \mathrm{LB})$: Sweeps up or down from a preset sweep width ($\Delta \mathrm{L}$) centered symmetrically about a preset center level (CL)
START/STEPS: (LA $\leq[L 1 \pm$ (Step Size X Number of Steps) $] \leq$ LB $)$: Sweeps up or down from a preset start level (L1) through a preset number of level steps
Sweep Functions:
AUTO : Continuous recycle of preset sweep
SIN GLE:A single cycle of preset sweep or (with stop activated) a single preset step, initiated by manual operation of the front panel push-button or the corresponding GPIB command
EXT:A single cycle of preset sweep or (with stop activated) a single preset step, initiated by each trigger from an external source
EXT STEP:A single step of preset sweep initiated by each trigger from an external source

MODULATION PARAMETERS AND

OPERATIONAL MODES (12500A and 12700A Series)
All models provide as standard; AM, FM and Pulse driven by an external waveform. O ption 24 provides two function generators for internally generating amplitude and frequency modulation envelope waveforms. A pulse generator is also provided.

PULSE/SQUARE WAVE MODULATION (PM)

Specifications apply with Scan/AM and FM off.

PM Envelope Parameters

$0 \mathrm{n} / \mathrm{O}$ ff Ratio: $>80 \mathrm{~dB}(60 \mathrm{~dB}$ with 0 ption 20)
Rise/Fall Times:

Rise Time	
$<10 \mathrm{~ns}$	Frequency Range
$<50 \mathrm{~ns}$	$>500 \mathrm{MHz}$
$<350 \mathrm{~ns}$	>64 to 500 MHz
$<500 \mathrm{~ns}$	25 to 64 MHz
	$<25 \mathrm{MHz}$

O vershoot, Undershoot and Ringing: $<10 \%,>500 \mathrm{MHz}$
Settling Time (to within 1 dB): $<75 \mathrm{~ns}$ (for pulses $>75 \mathrm{~ns}$)
Leveled Pulsed O utput Power Accuracy (Referenced to CW output power) at $25^{\circ}+/-10^{\circ} \mathrm{C}: \pm 0.5 \mathrm{~dB}, \geq 100$ ns pulse width: $(\pm 1 \mathrm{~dB}$ (typ), $<100 \mathrm{~ns}$ pulse width) (Requires a typical setup time of $100 \mu \mathrm{~s}$ after initial setting)

Minimum Width	
20 ns	$>500 \mathrm{MHz}$
100 ns	64 to 500 MHz
$1 \mu \mathrm{~s}$	$<64 \mathrm{MHz}$

Externally Generated PM Envelope:O ne PM envelope produced by each pulse Repetition Rate: 5 Hz to 5 MHz , leveled output
Pulse W idth: Defined by external pulse width
Pulse 0 ffset Delay (0 utput envelope leading edge referenced to input pulse leading edge): 50 ns , typical
Input Pulse Required: Positive or negative-goingTTL voltage level trigger pulse,≥ 75 ns wide (leveled output): $\geq 20 \mathrm{~ns}$ wide (unleveled output); pulse must be able to drive a 50 ohm load

INTERNALLY GENERATED PM ENVELOPE (O ption 24) Repetition Rate:

Range	Resolution
1 Hz to 1 kHz	1 Hz
>1 to 10 kHz	10 Hz
>10 to 100 kHz	100 Hz
$>100 \mathrm{kHz}$ to 1 MHz	1 kHz
>1 to 3 MHz	10 kHz

Accuracy (\% of range max value): $\pm 1 \% \mathrm{f}_{\mathrm{m}}<100 \mathrm{kHz}$,
$\pm 4 \% \mathrm{fm} 100 \mathrm{kHz}$ to $<1 \mathrm{MHz}, \pm 10 \% \mathrm{f}_{\mathrm{m}}>1 \mathrm{MHz}$
jitter: Same as instrument time base
Pulse Start Variable Delay (Referenced to sync output)
Range: 0 to 1.67 s
Resolution: 10 ns
Accuracy: $\pm 1 \%$ of setting or $\pm 20 \mathrm{~ns}$, whichever is greater
Jitter: $\pm 0.01 \%$ of setting or $\pm 100 \mathrm{ps}$, whichever is greater
Pulse W idth:
Range: 100 ns to 1.67 s
Resolution: 10 ns
A ccuracy: $\pm 1 \%$ of setting or $\pm 20 \mathrm{~ns}$, whichever is greater
Jitter: $\pm 0.01 \%$ of setting or $\pm 100 \mathrm{ps}$, whichever is greater
ExternallyTriggered PM Envelope:O ne PM envelope produced by each trigger Repetition Rate: 5 Hz to 5 MHz
Pulse Delay: Set by internal delay control
Pulse W idth: Set by internal width control
Input Trigger Required: Positive or negative-goingTTL level trigger pulse, >20 ns wide (unleveled); >75 ns (leveled)
Pulse Modes (Triggered, gated, delayed, singlet, doublet, triplet, or quadlet): Interval

Range: 100 ns to 1.67 s Resolution: 10 ns
Accuracy: $\pm 1 \%$ of setting or 20 ns , whichever is greater
N ote:The intervals between triplets and quadlets are the same.The start delay for pulse one is independent.

AMPLITUDE MODULATION

Specifications apply with FM off.

AM Envelope Parameters

Modulation Depth: 0 to 90%, at 0 dBm output power
Modulation Resolution: 1\%
Modulation Bandwidth: DC to $150 \mathrm{kHz}, \pm 3 \mathrm{~dB}$, at 0 dBm output
Modulation A ccuracy: $\pm 10 \%$ of depth setting

Externally Supplied AM Envelope

W aveform:A ny waveform compatible with bandwidth considerations Input Sensitivity (AM depth control set to 100%): 1 Vp -p, for 50%
depth $\pm 10 \%$ depth, at 1 kHz modulation rate
Input Impedance: 600Ω, nominal
Internally Generated AM Envelope (O ption 24)
W aveform: Sine, square, triangle, ramp (+ or -), Gaussian N oise
Rate: . 01 Hz to 1 MHz , all waveforms
Resolution: .01 Hz
A ccuracy: Same as time base.
THD:1\% typical
SCAN MODULATION (O ption 29)
Specifications apply with FM and PM off.
Frequency of operation: 0.01 to 20 GHz
Envelope Parameters
Range: 0 to 60 dB at output level $\geq 10 \mathrm{dBm}$
Resolution: 0.1 dB
Sensitivity: $-10 \mathrm{~dB} / \mathrm{V}$ in 1 dB increments
Step Response: <1 $\mu \mathrm{s}$ for 50 dB change ($<10 \mu \mathrm{~s}$ below 1 GHz)

Frequency Response: DC to 150 kHz sine wave, 3 dB
Accuracy: $\pm 0.25 \mathrm{~dB}$ plus $\pm 5 \%$ of depth in dB (for .01 to 2 GHz , specification applies up to 30 dB depth)
Linearity: $\pm 0.6 \mathrm{~dB}(0-20 \mathrm{~dB}), \pm 1 \mathrm{~dB}(20-60 \mathrm{~dB})$
Power: Reduce power by 2 dB
Input Impedance: 600Ω, no minal
Internally Generated SCAN Envelope (Option 24)
Same as internally generated AM envelope

FREQUENCY MODULATION (FM)

Specifications apply with SCAN /AM and PM off.

FM Envelope Parameters

W ide Mode
Max D eviation: (See following table)
Minimum Deviation: 10 kHz , at $4-8 \mathrm{GHz}$ (other ranges proportional)
Modulation Resolution: 1 kHz , (deviation $<1 \mathrm{MHz}$); 10 kHz (deviation >1 MHz) (at 4-8 GHz, other ranges proportional)
Rate: 100 Hz to $1 \mathrm{MHz} \pm 2 \mathrm{~dB} ; \pm 3 \mathrm{~dB}$ to 8 MHz
Residual FM : (See following table)
D istortion: $<5 \%$ ($\pm 1 \mathrm{MHz}$ deviation)
Narrow Mode
Max D eviation: (See following table)
Modulation Resolution: 10 Hz , (deviation $<10 \mathrm{kHz}$); 1 kHz , (deviation $>10 \mathrm{kHz}$) (at $4-8 \mathrm{GHz}$, other ranges proportional)
Rate: DC to $1 \mathrm{MHz} \pm 2 \mathrm{~dB} ; \pm 3 \mathrm{~dB}$ to 8 MHz
Residual FM: Same as CW
Distortion: $<5 \%(\pm 1 \mathrm{MHz}$ deviation); $<1 \%$ at $10 \mathrm{kHz}(4-8 \mathrm{GHz})$
Both Modes
Modulation Accuracy: $\pm 5 \%$ at maximum deviation; 190 kHz modulation rate
Incidental AM: $< \pm 0.2 \% / \mathrm{MHz}$ of deviation
Internally Generated FM/ØM Envelope (0 ption 24)
Same as internally generated AM envelope
Externally Supplied FM/ØM Envelope
W aveform:A ny waveform compatible with bandwidth considerations Rate: DC to 8 MHz
Input sensitivity, settable: 1 Vp for maximum peak deviation (FM deviation control set to maximum)
Input Impedance: 50Ω, nominal

PHASE MODULATION

Maximum Rate: 100 kHz
Maximum Resolution: 0.01 Radians
Accuracy: $\pm 5 \%$ (relative to FM) at max deviation, 100 kHz modulation rate Maximum Modualtion Index:

Frequency (GHz)	Max Wide Deviation (Peak)	Max Narrow Deviation (Peak)	Wide Mode Residual FM	Max Wide Mode Index Radians	
Max Narrow Mode Index Radians					
.010 to .016	40 kHz	2 kHz	200 Hz	.4	.02
.016 to .032	80 kHz	4 kHz	200 Hz	.8	.04
.032 to 064	160 kHz	8 kHz	200 Hz	1.6	.08
.064 to 125	320 kHz	16 kHz	200 Hz	3.2	.16
.125 to .25	640 kHz	32 kHz	200 Hz	6.4	.32
.25 to .5	1.25 MHz	64 kHz	200 Hz	12.5	.64
.5 to 1	2.5 MHz	125 kHz	375 Hz	25	1.25
1 to 2	5 MHz	250 kHz	750 Hz	50	2.5
2 to 4	10 MHz	.5 MHz	1.5 kHz	100	5
4 to 8	20 MHz	1 MHz	3 kHz	200	10
8 to 16	40 MHz	2 MHz	6 kHz	400	20
16 to 20	80 MHz	4 MHz	12 kHz	800	40

INPUTS/OUTPUTS

All connectors are type BNC unless otherwise stated.

Front Panel

RF O UT: Generator's RF output signal on type SMA (f) connector
AM IN: Input signal for external amplitude modulation
FM IN : Input signal for external frequency modulation
PM IN: Input signal for external pulse modulation

Rear Panel

REF IN : External time base input signal, 5 or $10 \mathrm{MHz}\left(\pm 1 \times 10^{-6}\right.$ or better), 0.5 to $5 \mathrm{~V}, \mathrm{p}-\mathrm{p}$, overrides internal time base Input Impedance: 100Ω, nominal
REF OUT: Buffered time base output, $\geq 2 \mathrm{~V}$, p-p squarewave, into 50Ω, derived from internal or external time base
STO P SW EEP IN /O UT:TTL level signal, low input to stop frequency sweep or output to indicate that sweep has been stopped
LOC K/LEVEL OUT:TTL high, indicating that frequency is phase-locked and output power is leveled
PM VIDEO OUT:TTL level (approximately 1V into 50Ω) pulse modulation envelo pe waveform (opt 24)
PM SYN C OUT:TTL level (approximately 1 V into 50Ω) 50 ns wide trigger pulse out coincident with leading edge of pulse modulation envelope waveform (opt 24)
AM OUT:2 V, p-p, into $1 \mathrm{~m} \Omega$, amplitude modulation waveform output (opt 24)
FM OUT: 2 V , p-p, into $1 \mathrm{~m} \Omega$, frequency modulation waveform output (opt 24)
BLAN K/MKR O UT: $\pm 5 \mathrm{~V}$ during band changes, filter changes and retrace; 0 V during sweep; and $\pm 5 \mathrm{~V}$ during markers; signal polarity softw are selectable
V/GHz OUT: Signal directly proportional to the output frequency (0.5 $\mathrm{v} / \mathrm{GHz}$ for $\leq 20 \mathrm{GHz}$ models)
SW EEP TRIGGER IN:TTL level, ≥ 50 ns wide trigger input to initiate sweep or step
RAMP OUT:0 to +10 V ramp out, proportional to frequency between set sweep limits
SW PTRIG OUT:Trigger output coincident with frequency step ending event
AM IN : Input signal for external amplitude modulation
FM IN : Input signal for external frequency modulation
PM IN: Input signal for external pulse modulation

GENERAL SPECIFICATIONS

Remote Interface: IEEE STD 488.2 - All parameters except AC power on/off; RS232 Serial Interface DB9 C onnector
O perating Temperature: 0 to $55^{\circ} \mathrm{C}$
Environmental: Complies with MILPRF-28800F, Class 3
Approvals: CE marked
Power: 90-253VAC , 47-64 Hz (400 Hz optional), 150 W atts nominal Fuse Rating: 2A, 5B
W eight: $13.6 \mathrm{~kg}(30 \mathrm{lb})$
Dimensions: $133 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{mmW} \times 533 \mathrm{~mm}$ D (5.25 in $\mathrm{H} \times 16.75$ in W $\times 21$ in D)

D ata subject to change without notice.
Typical C haracteristics are indicated by italic type
02/02

Gga-trontcs

Giga-tronics Incorporated • 4650 Norris Canyon Road •San Ramon, California 94583 •Telephone: 800-726-4442 or 925-328-4650 •Telefax: 925-328-4700

