

| Signal<br>Inputs<br>Sensitivity | INPUT AMPLIFIER       |                                        |                                      |                      |                                                           |               |                 |                                                       |                 |                     |
|---------------------------------|-----------------------|----------------------------------------|--------------------------------------|----------------------|-----------------------------------------------------------|---------------|-----------------|-------------------------------------------------------|-----------------|---------------------|
|                                 | DIRECT                | 5316<br>NORMAL<br>MODE<br>100 nV - 1 V | 5316<br>XMFR<br>MODE<br>1 nV - 10 mV | 5317<br>100 nV - 1 V | 5381<br>Conversion Gain A/V                               |               |                 |                                                       |                 |                     |
|                                 |                       |                                        |                                      |                      |                                                           |               |                 |                                                       |                 |                     |
|                                 |                       |                                        |                                      |                      | Frequency<br>Response                                     | 1 mHz - 1 MHz | 100 mHz - 1 MHz | 1 Hz - 50 kHz<br>Dependent On<br>Source<br>Resistance | 100 mHz - 1 MHz | 1 Hz<br>to<br>1 kHz |
| Input<br>Impedance              | 10 MΩ/25 pF           | 100 MΩ - 15 pF                         | Transformer Primary Low Impedance    | 100 MΩ - 15 pF       | 1 Ω - 50 kΩ DEPENDENT ON<br>CONVERSION GAIN AND FREQUENCY |               |                 |                                                       |                 |                     |
| Input Noise                     | 25 nV/√H z<br>@ 1 kHz |                                        |                                      |                      |                                                           |               |                 |                                                       |                 |                     |
| Input<br>Modes                  | DIFF                  | SINGLE/DIFF                            | SINGLE/DIFF                          | SINGLE/DIFF          | SINGLE                                                    |               |                 |                                                       |                 |                     |
| CMRR<br>@ 50/60 Hz              | 40 dB                 | 100 dB                                 | 140 dB                               | 100 dB               | NOT APPLICABLE                                            |               |                 |                                                       |                 |                     |

Note: All indicated sensitivities are without output expand.

## Figure A-1. DIRECT VS. PREAMP INPUT CHARACTERISTICS

# A.1 Signal Channel

## Frequency range

With DIRECT INPUT selected: 1 mHz to 1MHz in 3 ranges (NORMAL, LOW 1, LOW 2).

With PREAMP selected: frequency range depends on preamplifier type (see table above).

# Input impedance

With DIRECT INPUT selected: 10 M $\Omega$  in parallel with 30 pF (NORMAL and LOW 1), 100 M $\Omega$  in parallel with 30 pF (LOW 2).

With PREAMP selected: input impedance depends on preamplifier type (see table above).

### Sensitivity

With DIRECT INPUT selected:

AC coupling, timeconstant > 10 ms: 1  $\mu$ V to 1 V in 1-2-5 sequence; timeconstant < 20 ms: 100  $\mu$ V to 1V in 1-2-5 sequence;

DC coupling: 10 mV to 1 V in 1-2-5 sequence.

With PREAMP selected: sensitivity depends on preamplifier type (see table above).

### **Preamplifiers**

Although the Model 5302 can achieve excellent results in many applications without a preamplifier, we recommend use of one or more of the following plug-in preamplifiers to utilize fully the 5302's capabilities.

5315 Multiplexer 5316 Hi Impedance/Transformer

5317 Hi Impedance 5320 Wide Frequency/Transformer

5381 Current 5383 Remote

# Signal-Channel filters

Line Filters:

First and second harmonic notch filters can be switched in to suppress line related pick-up. Notch frequencies are 50 and 100 or 60 and 120 Hz, depending on factory settings.

Main filter:

Frequency range: 2 Hz to 1 MHz.

Normal configuration: 4th order filter in FLAT, BANDPASS, LOWPASS,

HIGHPASS, or NOTCH modes; Q = 2.

Special configuration: two 2nd order sections with independent frequency and function control in FLAT, BANDPASS, LOWPASS, HIGHPASS, or NOTCH modes; Q of first filter can be set to 0.7, 2, or 10.

## Dynamic Reserve

Up to 125 dB.

# A.2 Reference channel

### Modes

Internal: waveforms from the internal synthesizer are applied directly to the demodulator. Phase lock is instantaneous and phase noise is lowest. The frequency range is 1 mHz to 1 MHz.

External: below 100 Hz, the digital reference circuit locks to the reference input within one cycle providing very low phase noise. At frequencies above 100 Hz, the analog phase-locked loop provides optimum performance. The frequency range is 1 mHz to 1 MHz. To speed up reference lock at extreme low frequencies use internal mode at the approximate frequency followed by switching to an external reference mode.

Reference Inputs

Analog: the standard inputs at the front-panel REF IN connector are a squarewave of amplitude 100 mV or greater, or a sinusoid of frequency 1 Hz - 1 MHz and amplitude 1 V rms or greater. Reference inputs of less than the standard values can be used at the expense of increased phase noise.

Digital: the rear-panel TTL REF IN connector allows the reference channel to be driven from TTL sources. The reference circuits will always trigger on a positive-going transition. TTL compatible pulse sequences not acceptable to the front-panel reference input can be used.

In order to obtain the best accuracy and reproducibility in the external reference modes, it is advisable to execute the auto-tune function or the LOCK command after any change in reference frequency.

NF - Reference Harmonic Operation

In an NF mode, where N has a value from 2 to 8, the reference frequency is exactly N times the fundamental frequency of the reference input or the internal synthesizer, subject to an upper frequency limit of 1 MHz.

**Acquisition Time** 

This is the time required for the Reference Channel to lock in frequency and phase to the reference input or the internal synthesizer.

External modes: 1 period + 1 second.

Internal mode: 1 period + 1 second in hard phase, instantaneous in soft phase.

### Phase shift

Coarse:

Implemented either by reference-channel hardware (Hard Phase) or by vector rotation implemented in software in the demodulator (Soft Phase).

Accuracy: Hard Phase 3°, Soft Phase 1 m°.

Setting Resolution:

0.1°; front-panel knob adjusts phase 360° with 0.1° resolution.

Front-panel key adds 90° to the setting with each press.

Fine: 0.001°; After initial phase adjustment in normal mode, FINE

PHASE can be used to trim final adjustment. Range is ±1° with

1 m° resolution.

Orthogonality: 0.1°

# A.3 Demodulator

### Demodulation function

8-step Walsh or squarewave.

# Time Constant of Output Filter

 $1 \mu s$  to 1000 s.

# Weighting Function of Output Filter

Exponential 6 dB/octave or 12 dB/octave, rectangular (6 dB/octave) or triangular (12 dB/octave).

## **Digital Outputs**

 $\pm 10000$  fs,  $\pm 12500$  max.

#### **Analog Outputs**

CH1, CH2:

 $\pm 10.0 \text{ V fs}$ , 1 k $\Omega$  impedance, 1 mV resolution.

FAST OUT X,Y:  $\pm$  9.4 V fs  $\pm$ 3%, 100  $\Omega$  impedance.

### Stability

Normal:

±1 LSB/°C (typical)

Hi STAB:

±1 LSB/10° C (typical)

FAST OUT:

 $\pm 100 \,\mu\text{V/}^{\circ}\text{C}$ 

# A.4 Oscillator

### Type

Quartz Controlled Synthesizer

#### Frequency Range

1 mHz to 1 MHz

### Frequency Stability

±30 ppm/°C

### **Frequency Setting Resolution**

0.1% of frequency (typical)

## **Output Amplitude and Impedance**

5 mV - 5 V rms, 450 Ω

## **Amplitude Stability**

0.02%/°C (typical)

## **Amplitude Setting Resolution**

Above 0.5 V: 20 mV Below 0.5 V: 2.0 mV

### **Harmonic Distortion**

0.2% to 20 kHz; < 1% above 20 kHz.

# A.5 Auxiliary I/O

**ADC Inputs** 

There are four ADC inputs on the back panel. The digitized outputs can be read from the ADCS screen or with the use of the ADC command.

Range:  $\pm 12.5$  V, corresponding to  $\pm 12500$  decimal (resolution 1 mV).

Input Impedance: 20 k $\Omega$  in parallel with 30 pF.

### **DAC Outputs**

There are two DAC outputs on the back panel. The inputs are implemented from the DACS screen or with the use of the DAC command.

Range:  $\pm 12.5$  V, corresponding to  $\pm 12500$  decimal (resolution 1 mV).

Output Impedance: 1.0 k $\Omega$ .

# A.6 Curve store memory

**Memory Size** 

10000 points by 16-bit (15 bits + sign) memory can be subdivided into n separate curves (12 max) each of 10000/n points (e.g. four curves each of 2500 points).

#### Storage Rate

200 points/second (max)

#### **Readout Rate**

RS232: 200 points/second (typical) IEEE: 250 points/second (typical).

# A.7 Power requirements

100 - 117 V ac or 200 - 240 V ac (47 - 63 Hz) 390 W.