
Agilent ENA-L RF Network Analyzers

E5061A, 300 kHz to 1.5 GHz E5062A, 300 kHz to 3 GHz

Agilent's New Standard For Low-Cost Basic RF Network Analysis!

Modern Technology and Powerful Productivity Features to Improve your Efficiency

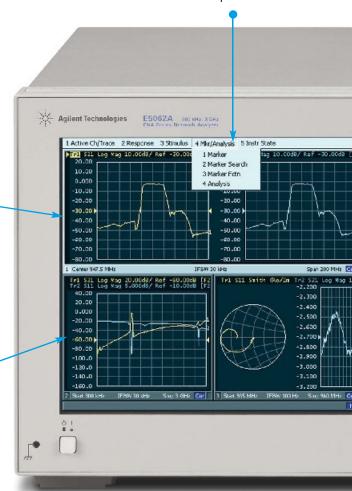
Solid performance in an easy to use low-cost RF network analyzer

Windows® style interface with optional touch screen enables intuitive operation.

Providing the latest in modern technology and flexibility, the Agilent ENA-L network analyzers provide basic vector network analysis in a wide range of industries and applications such as wireless communication, cable TV, automotive, education, and more. Designed to reduce tune and test times, these analyzers provide increased throughput to improve your measurement productivity.

The ENA-L offers all of the critical performance and features needed in R&D, manufacturing, and service to test RF components such as: filters, amplifiers, antennas, cables, CATV taps, and distribution amplifiers.

The affordably priced ENA-L, equipped with the core functions of the industry-standard ENA, includes many easy-to-use features and is optimized for efficient measurements and high reliability.


A variety of sweep functions for effective analysis. Power sweep and three types of frequency (linear/log/segment).

Multi-channel measurements display (4 measurement channels/4 traces per channel) speeds your component evaluation allowing you to view all four S-parameters of a two-port device simultaneously.

Large (10.4-inch) color LCD clearly displays your measurements with the parameters you need.

Powerful analysis functions improve productivity

- Limit-line testing facilitates consistent test results
- Fault location/SRL analysis (optional) simplifies cable measurements

Simplifying tasks with advanced features

An easy to use user interface makes tasks simple.

Shorter instrument depth (360 mm) allows for more

Electronic calibration (ECal) module (Optional) with only one set of connections, helps to speed and simplify your calibration process.

Variety of test set choices to meet your exact needs

- Transmission/reflection or S-parameter
- 50 Ω or 75 Ω port impedance

ENA-L Highlights

300 kHz to 1.5 GHz	
300 kHz to 3 GHz	
T/R or S-parameter	
50 or 75 Ω	
-5 to 10 dBm	
-45 to 10 dBm with extended	
power range	
>120 dB	
0.005 dB rms	
Linear, log, segment, power	
10.4-inch color LCD	
Optional touch screen	
Yes	
4	
Yes	
Yes	
Yes	

Save/Recall (to floppy or hard drive)

minimizes setup time. Quickly switch between test setups by recalling an instrument state.

Built-in VBA programming simplifies complicated measurements and decreases operator error. Easily automate common measurement procedures and create a graphic user interface tailored to your measurement needs.

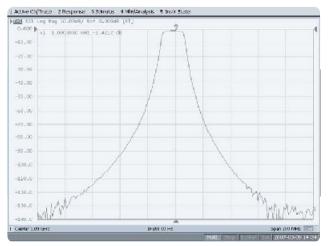
Flexible connectivity (through rear-panel connectors)


- Handler I/O: high-speed hand-shake with parts handler or other instrument with user defined I/O signals
- · GPIB: robust instrument control
- LAN: high speed instrument control and data transfer
- · USB: easy connection to printer
- Parallel: printer and multiport test set
- · VGA: external display

Enabling accurate and efficient RF component evaluation

Fundamental performance with versatile general-purpose test capabilities

The ENA-L, with its > 120 dB dynamic range and 0.005 dB rms trace noise, provides the accuracy and speed required for many network measurement applications. The wide 30 kHz IF bandwidth (IFBW) and powerful digital processing provide unprecedented measurement speed. The S-parameter test set options offer full two-port calibration for optimum accuracy (Option 250 or 275).

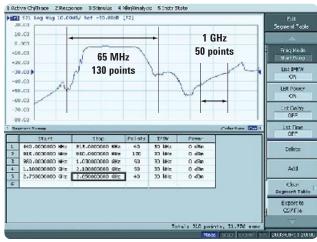

Fast frequency sweep increases throughput and lowers your cost per component.¹

See the entire ENA network analyzer family

For applications with more demanding measurement needs and higher frequencies up to 8.5 GHz, engineers world-wide rely on the high-performance of the Agilent E5071C ENA RF network analyzers. With the same user-friendly interface as the ENA-L analyzers, ENA models offer expanded capabilities such as:

- Balanced and multiport measurements
- · Mixer and harmonic measurement
- Integrated bias tees

For more information regarding the entire ENA Series of network analyzers, visit the ENA web site: www.agilent.com/find/ena.



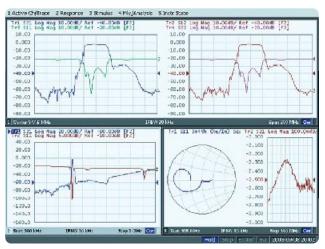
Wide dynamic range allows precise evaluation of high rejection filters.

A variety of sweep functions for effective analysis

Power sweep and three types of frequency functions provide effective analysis to suit your application needs such as:

- Power sweep to analyze active devices such as amplifiers
- Linear sweep to evaluate narrow-band devices such as filters
- Log sweep to evaluate broadband devices such as cables
- Segment sweep allows you to tailor the sweep condition with up to 201 sweep segments

Segment sweep allows you to measure, at various intervals, ONLY the necessary frequencies.


^{1.} Agilent E5061A verses Agilent 8712ES sweep speed comparison with typical data (201 points, 2-port cal., 90 dB dynamic range).

Powerful features you need to reduce test time

Multi-channel measurement display capability speeds your component evaluation

Display up to four traces per measurement channel and evaluate all four S-parameters of a two-port device at the same time. Each of the ENA-L's four measurement channels can have independent measurement settings such as frequency range, enabling you to compare traces with different measurement conditions. In total, the ENA-L allows you to display and analyze 16 traces simultaneously!

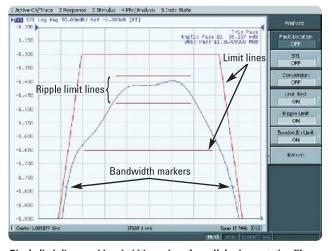
Display it all with powerful display capabilities

Optional Electronic Calibration (ECal) drastically simplifies calibration

Unlike the traditional mechanical calibration technique, Agilent's ECal modules only require one set of connections to perform full two-port calibration (controlled through the front panel USB port). The ENA-L controls the ECal module to perform the entire calibration to provide:

- · Faster calibration and reduced complexity
- Reduced chance of operator error
- · Reduced wear on connectors

Controlled through the front panel USB port, and requiring only one set of connections, ECal simplifies the process for non-technical operators.



Limit-line testing facilitates consistent test results

Eliminate the guesswork and facilitate pass/fail judgement with limit-line testing to increase the reliability and productivity of your test processes. Limit-line conditions can be easily defined by editing the spreadsheet on the analyzer's display.

Easily define limit-line test conditions with Windows-style interface.

Ripple limit lines and bandwidth markers for cellular base station filter tuning.

Tailor measurements to your specific applications

CATV Component measurements

ENA-L is designed for 75 Ω measurements

A fully specified 75 Ω test port impedance option is available for reliable CATV component measurements. With the 75 Ω ECal, you can perform fully calibrated measurements with minimal calibration effort.

A complete multiport test solution

The ENA-L, with the 87075C 75 Ω multiport test set, provides an ideal solution for multiport CATV component measurement. The test system offers fast measurement speed, high accuracy, and productivity features to maximize your production throughput.

- Specified performance to 1.3 GHz
- 6 or 12 test ports
- Test set calibration technique eliminates redundant connection of calibration standards, and ECal further reduces the number of connections.
- Self calibration (an internally automated calibration technique) reduces the effects of test system drift.

Cable measurements

Simplify cable measurements with fault location/SRL analysis (Option 100)

The reduced size of the ENA-L enables you to test cables that are still on a spool in a warehouse or already installed on a cellular tower quickly and accurately. This solution allows you thorough cable testing including loss, impedance, structural return loss (SRL), and fault location measurements, and has many advantages over traditional time-domain reflectometry (TDR) techniques.

Customize ENA-L with VBA

VBA simplifies complicated measurements

ENA-L's built-in VBA programming function allows you to automate measurement procedures and easily create a graphic user interface, tailored for your measurement needs. A test program can be developed with the built-in editor or on an external PC with Visual Basic® (VB).

The VBA launcher function allows you to execute a program with a single softkey.

The ENA Series offers the solutions you require

ENA-L

E5061A E5062A 300 kHz to 1.5 GHz network analyzer 300 kHz to 3 GHz network analyzer

ENA

E5071C

9/100 kHz to 4.5/8.5 GHz network analyzer

Common to entire ENA Series

Ease-of-use

- 10.4 inch color LCD
- Touch screen (Option 016)
- Windows-styled operation with mouse as well as conventional front panel key operation

Productivity features

- · ECal support
- · Multi channels and traces
- Save/Recall
- · Limit-line test
- · Built-in VBA
- GPIB/Handler IO/LAN/USB

Unique to ENA-L

Affordability

- · Lowest cost RF solution
- T/R test set

CATV solution

- Built-in 75 Ω
- 87075C 75 Ω multiport test set

Cable solution

· Fault location and SRL

Small footprint

· 360 mm depth

Unique to ENA

Advanced measurement capabilities

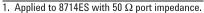
- · Balanced measurements
- · Mixer and harmonic measurements
- · Integrated bias tees
- DC measurement

Advanced calibrations

- TRL/LRM, Unknown-thru SOLT
- Adapter removal
- Auto port extension
- ECal characterization

Advanced data analysis

- · Embedding/de-embedding
- Equation editor
- · Time domain gating


To our 8712 and 8714 Series customers... The ENA-L network analyzer provides even greater value!

The standard just got better

Agilent 8712 and 8714 Series network analyzers have long been recognized as the standard low cost tools for a wide range of applications, providing reliable basic network measurements at an affordable price. ENA-L provides you with even greater value for your money offering the latest in modern technology and ease-of-use.

Protecting your software investment

Agilent protects your 8712 and 8714 software investment by providing migration tools² to reduce your code and state files conversion effort.

For more information about the migration tools, visit the ENA series web site:
 www.agilent.com/find/ena

3. Typical data, 201 points, 2-port calibration, 90 dB dynamic range.

	Agilent ENA-L	Agilent 8712/8714
Frequency	300 kHz to 3 GHz	300 kHz to 3 GHz
Test set	T/R or S-parameter	T/R or S-parameter
Port impedance	50 or 75 Ω	50 or 75 Ω
Dynamic range	> 120 dB	101 dB ¹
Sweep speed ³	35 ms	240 ms
Sweep types	Linear, log, segment, power	Linear, power
Display	10.4-inch color LCD	9-inch black & white monitor
	Optional touch screen	
Measurement channels	4	2
ECal support	Yes	No
VBA Programming	Yes	No(IBASIC)
Broadband detection	No	Yes
Absolute power measurement	No	Yes
Limit lines	Yes	Yes
Save recall	Yes	Yes

Features enhanced in ENA-L

Features not supported in ENA-L

Ordering information

E5061A	300 kHz to 1.5 GHz network analyzer
E5062A	300 kHz to 3 GHz network analyzer
Option E5061A/62A - 150	TR test set 50 ohm system impedance
Option E5061A/62A - 175	TR test set 75 ohm system impedance
Option E5061A/62A - 250	S-parameter test set 50 ohm system impedance
	with extended power range
Option E5061A/62A - 275	S-parameter test set 75 ohm system impedance
	with extended power range
Option E5061A/62A - 1E1	Extended power range (-45 to 10 dBm)
Option E5061A/62A - 100	Add fault location and SRL analysis
Option E5061A/62A - 016	Touch screen color LCD

Electronic calibration (ECal) modules

85092C	Type-N 50 ohm RF ECal module
85093C	3.5 mm RF ECal module
85096C	Type-N 75 ohm RF ECal module
85099C	Type-F RF ECal module

Agilent Trade Up helps you migrate to ENA-L from your current network analyzer

Agilent Trade Up is a robust, easy-to-use program that helps test-and-measurement companies upgrade to the most advanced solutions that will reduce their costs, increase their efficiency and help them get to market quickly.

The program covers hundreds of the test-and-measurement products manufactured by Agilent Technologies and other companies over the past decades. So the chances are you can find a match between equipment you no longer need and new technologies that will improve your efficiency.

To get more information and learn about our promotional offers, visit our web site at: www.agilent.com/find/trade-up

NOTE: Agilent Trade Up is not available in all countries.

Additional information

For additional ENA-L product information and literature visit our Web site: www.agilent.com/find/ena

For additional electronic calibration (ECal) product information and literature: www.agilent.com/find/ecal

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect

Quickly choose and use your test equipment solutions with confidence.

Windows® and Visual Basic® are U.S. registered trademark of Microsoft Corporation.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

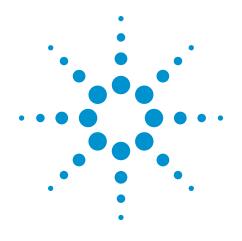
www.agilent.com/find/contactus

Phone or Fax

North America	
Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444
Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693

Hong Kong	800 938 693
India	1 800 112 929
Japan	81 426 56 7832
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

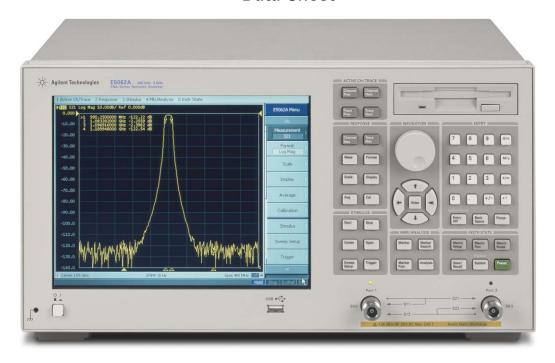
Europe	
Austria	0820 87 44 11
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700
Germany	01805 24 6333*
	*0.14 /minute
Ireland	1890 924 204
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
Switzerland (French)	44 (21) 8113811(Opt 2)
Switzerland (German)	0800 80 53 53 (Opt 1)
United Kingdom	44 (0) 7004 666666
Other Furonean Count	tries:


Other European Countries: www.agilent.com/find/contactus

Revised: March 24, 2007

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003-2007 Printed in USA, April 3, 2007 5989-0167EN



Agilent ENA-L RF Network Analyzers

E5061A, 300 kHz to 1.5 GHz E5062A, 300 kHz to 3 GHz

Data Sheet

Definitions

All specifications apply over a 23 °C ±5 °C range (unless otherwise stated) and 90 minutes after the instrument has been turned on.

Specification (spec.):

Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Supplemental information is intended to provide information that is helpful for using the instrument but that is not guaranteed by the product warranty.

Typical (typ.):

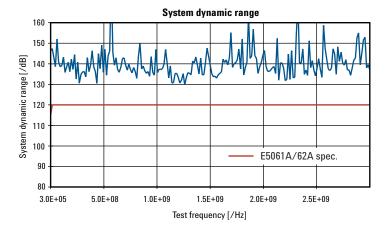
Describes performance that will be met by a minimum of 80% of all products. It is not guaranteed by the product warranty.

Supplemental performance data (SPD):

Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not guaranteed by the product warranty.

General characteristics:

A general, descriptive term that does not imply a level of performance.


Corrected system performance

The specifications in this section apply for measurements made with the Agilent E5061A/E5062A network analyzer with the following conditions:

- No averaging applied to data
- \bullet Environmental temperature of 23 °C ±5 °C, with less than 1 °C deviation from the calibration temperature
- · Response and isolation calibration not omitted

Table 1-1 System dynamic range¹²

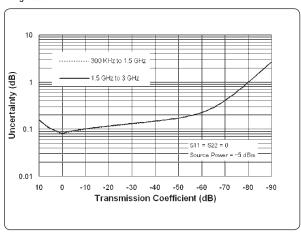
Description	Specification	SPD	
System dynamic range			
300 kHz to 1 MHz, IF bandwidth = 3 kHz	90 dB		
1 MHz to 3 GHz, IF bandwidth = 3 kHz	95 dB		
300 kHz to 1 MHz, IF bandwidth = 10 Hz	115 dB		
1 MHz to 3 GHz, IF bandwidth = 10 Hz	120 dB	130 dB	

System dynamic range; specification and measurement example

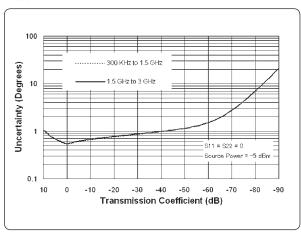
The test port dynamic range is calculated as the difference between the test port rms noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainty and interfering signals into account.

^{2.} Applicable to the units with serial prefix MY442 and above .

Table 1-2 Corrected system performance with Type-N 50 Ω connectors, 85032F calibration kit, full 2-port calibration

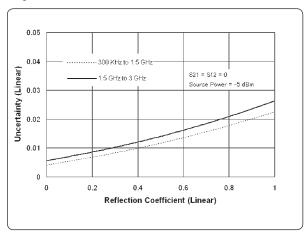

Network analyzer: E5061A/E5062A, calibration kit: 85032F (Type-N, 50 Ω), calibration: full 2-port

IF bandwidth = 10 Hz, No averaging applied to data, environmental temperature = 23 °C ± 5 °C with < 1 °C deviation from calibration temperature, isolation calibration not omitted


Description	Specification (dB)	
	300 kHz to 1.5 GHz	1.5 to 3 GHz
Directivity	49	46
Source match	41	40
Load match	49	46
Reflection tracking	±0.011	±0.021
Transmission tracking	±0.015	±0.018

Transmission uncertainty (specification)

Magnitude



Phase

Reflection uncertainty (specification)

Magnitude

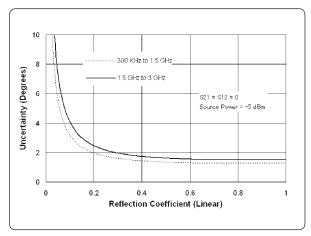
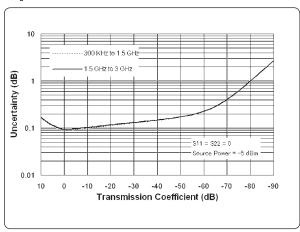
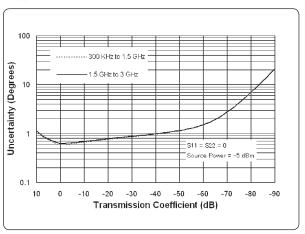


Table 1-3 Corrected system performance with Type-N 50 Ω connectors, 85032F calibration kit, enhanced response calibration

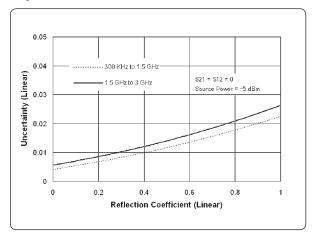

Network analyzer: E5061A/E5062A, calibration kit: 85032F (Type-N, 50 Ω) calibration: enhanced response

IF bandwidth = 10 Hz, no averaging applied to data, environmental temperature = 23 °C ± 5 °C with < 1 °C deviation from calibration temperature, isolation calibration not omitted


Description	Specification (dB)	
	300 kHz to 1.5 GHz	1.5 to 3 GHz
Directivity	49	46
Source match	41	40
Load match	15	15
Reflection tracking	±0.011	±0.021
Transmission tracking	±0.015	±0.018

Transmission uncertainty (specification)

Magnitude



Phase

Reflection uncertainty (specification)

Magnitude

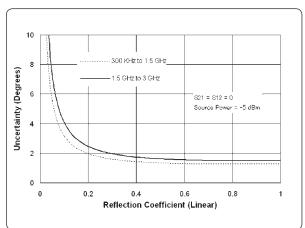
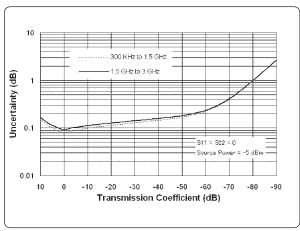
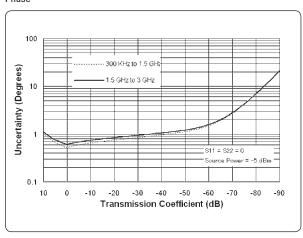


Table 1-4 Corrected system performance with Type-N 75 Ω connectors 85036E calibration kit, full 2-port calibration

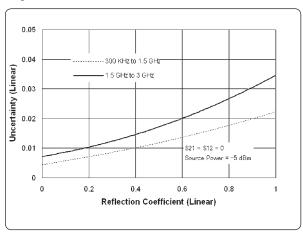

Network analyzer: E5061A/E5062A, calibration kit: 85036E (Type-N, 75 Ω), calibration: full 2-port

IF bandwidth = 10 Hz, no averaging applied to data, environmental temperature = 23 °C ± 5 °C with < 1 °C deviation from calibration temperature, isolation calibration not omitted


Description	Specification (dB)	
	300 kHz to 1.5 GHz	1.5 to 3 GHz
Directivity	48	44
Source match	41	35
Load match	48	44
Reflection tracking	±0.010	±0.019
Transmission tracking	±0.015	±0.029

Transmission uncertainty (specification)

Magnitude



Phase

Reflection uncertainty (specification)

Magnitude

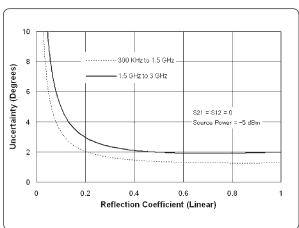
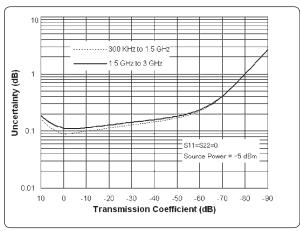
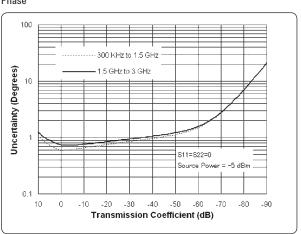


Table 1-5 Corrected system performance with Type-N 75 Ω connectors 85036E calibration kit, enhanced response calibration

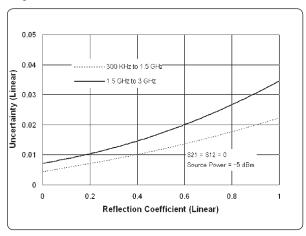

Network analyzer: E5061A/E5062A, calibration kit 85036E (Type-N, 75 Ω), calibration: enhanced response

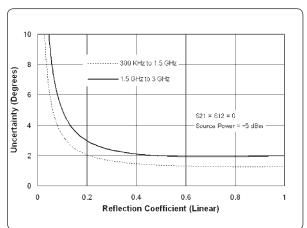
IF bandwidth = 10 Hz, no averaging applied to data, environmental temperature = 23 °C ± 5 °C with < 1 °C deviation from calibration temperature, isolation calibration not omitted


Description	Specification (dB)	
	300 kHz to 1.5 GHz	1.5 to 3 GHz
Directivity	48	44
Source match	41	35
Load match	15	15
Reflection tracking	±0.010	±0.019
Transmission tracking	±0.015	±0.029

Transmission uncertainty (specification)

Magnitude




Phase

Reflection uncertainty (specification)

Magnitude

Uncorrected system performance

Table 1-6 Uncorrected system performance (correction: off, 23 °C ± 5 °C)

Description	Specification	
	300 kHz to 3 GHz	
Directivity	25 dB	
Source match	25 dB	
Load match	15 dB	
Transmission tracking	±1.0 dB	
Reflection tracking	±1.0 dB	

Test port output (source)

Table 1-7 Test port output frequency

Description	Specification	Typical
Range		
E5061A	300 kHz to 1.5 GHz	
E5062A	300 kHz to 3 GHz	
Resolution	1 Hz	
Source stability		
E5061A/E5062A		±5 ppm (5 °C to 40 °C)
CW accuracy		
E5061A/E5062A	±5 ppm, 23 °C ±5 °C	

Test port output (source)

Table 1-8 Test port output power

Description	Specification	Typical
Level accuracy (at 23 °C ±5 °C) ¹		
300 kHz to 3 GHz	±0.8 dB (at 0 dBm, 50 MHz absolute)	
	±1.0 dB (at 0 dBm, relative	
	to 50 MHz reference)	
Level linearity (at 23°C ±5°C)		
300 kHz to 3 GHz	±0.75 dB (at -5 to 10 dBm)	
Range (standard)		
300 kHz to 3 GHz	–5 to 10 dBm	
Range (extended power)		
300 kHz to 3 GHz		-45 to 10 dBm (non-harmonics spurious may limit power range)
Sweep range (without extended pow	ver range)	
300 kHz to 3 GHz	–5 to 10 dBm	
Level resolution	0.05 dB	

Test port output (source)

Table 1-9 Test port output signal purity

Description	Specification	ТурісаІ	
Harmonics (2nd or 3rd)			
10 MHz to 2 GHz		< -25 dBc (at 5 dBm)	
Non-harmonic spurious			
10 MHz to 3 GHz		< -30 dBc (at 0 dBm)	

^{1.} Level accuracy for 75Ω analyzers is not a specification for frequencies >2 GHz; it is a typical characteristic.

Test port input

Table 1-10 Test port input levels

Description	Specification	Typical	
Maximum test port input level			
300 kHz to 3 GHz	+10 dBm		
Damage level			
300 kHz to 3 GHz		+20 dBm, ±30 VDC	
Crosstalk ¹			
300 kHz to 3 GHz	–110 dB		

Table 1-11 Test port input (trace noise²)

Description	Specification	Typical	
Trace noise magnitude			
300 kHz to 1 MHz (source power level = +10 dBm)	8 mdB rms (23 °C ±5 °C)		
1 MHz to 3 GHz (source power level = +10 dBm)	5 mdB rms (23 °C ±5 °C)		
Trace noise phase			
300 kHz to 1 MHz (source power level = +10 dBm)	0.05° rms (23 °C ±5 °C)		
1 MHz to 3 GHz (source power level = +10 dBm)	0.03° rms (23 °C ±5 °C)		

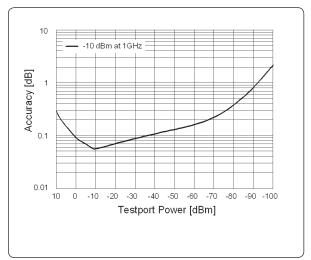
Table 1-12 Test port input (stability³)

Description	Specification	ТурісаІ	
Stability magnitude			
3 MHz to 3 GHz		0.01 dB/°C (at 23 °C \pm 5 °C)	
Stability phase			
3 MHz to 3 GHz		0.1°/°C (at 23 °C ±5 °C)	

^{1.} Response calibration not omitted.

^{2.} Trace noise is defined as a ratio measurement of a through, at IF bandwidth = 3 kHz.

^{3.} Stability is defined as a ratio measurement at the test port.


Table 1-13 Test port input (dynamic accuracy)

Accuracy of the test port input power reading is relative to $-10~\mathrm{dBm}$ reference input power level.

Specification

Typical

Magnitude

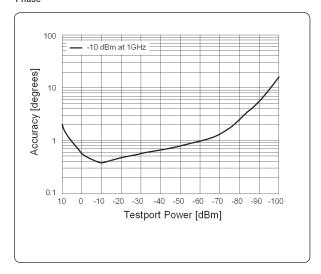
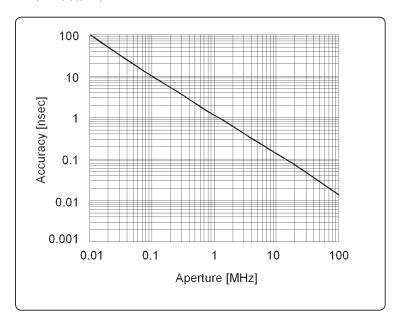



Table 1-14 Test port input (group delay¹)

Description	Specification	Supplemental information
Aperture (selectable)	(frequency span)/(number of points -1)	
Maximum aperture	25% of frequency span	
Minimum delay		Limited to measuring no more than
		180° of phase change within the minimum aperture.
Accuracy		See graph below

The following graph shows group delay accuracy with Type-N full 2-port calibration and a 10 Hz IF bandwidth. Insertion loss is assumed to be < 2 dB.

Group delay (typical)

In general, the following formula can be used to determine the accuracy, in seconds, of specific group delay measurement: \pm phase accuracy (deg)/[360 x aperture (Hz)]

^{1.} Group delay is computed by measuring the phase change within a specified step (determined by the frequency span and the number of points per sweep).

General information

Table 1-15 System bandwidths

Description	General characteristics	
IF bandwidth settings		
Range	10 Hz to 30 kHz	
	Nominal settings are:	
	10, 30, 100, 300, 1 k, 3 k, 10 k, 30 k	

Table 1-16 Front panel information

Description	General characteristics	
RF connectors		
Туре	Type-N, female; 50 Ω or 75 Ω	
Display		
Size	10.4 in TFT color LCD	
Resolution	VGA (640 x 480) ¹	

^{1.} Valid pixels are 99.99% and more. Below 0.01% of fixed points of black, blue, green or red are not regarded as failure.

Table 1-17 Rear panel information

Description	General characteristics
External trigger connector	
Туре	BNC, female
Input level	LOW threshold voltage: 0.5 V HIGH threshold voltage: 2.1 V Input level range: 0 to +5 V
Pulse width	≥ 2 µsec
Polarity	Negative (downward) only
External reference signal input connector	
Туре	BNC, female
Input frequency	10 MHz ±10 ppm
Input level	0 dBm ±3 dB
Internal reference signal output connector	
Туре	BNC, female
Output frequency	10 MHz ±10 ppm
Signal type	Sine wave
Output level	0 dBm ± 3 dB into 50 Ω
Output impedance	50 Ω
VGA video output	15-pin mini D-Sub; female; drives VGA compatible monitors
GPIB	24-pin D-Sub (type D-24), female; compatible with IEEE-488
Parallel port	36-pin D-Sub (type 1284-C), female; provides connection to printers, or multiport test set
USB port	Universal serial bus jack, type A configuration (4 contacts inline, contact 1 on left); female; provides connection to printer, ECal module, USB/GPIB interface
Contact 1	Vcc: 4.75 to 5.25 VDC, 500 mA, maximum
Contact 2	-Data
Contact 3	+Data
Contact 4	Ground
LAN	10/100 BaseT Ethernet, 8-pin configuration; auto selects between the two data rates
Handler I/O port	36-pin Centronics, female; provides connection to handler system
Line power ¹	
Frequency	47 Hz to 63 Hz
Voltage	90 to 132 VAC, or 198 to 264 VAC (automatically switched)
VA max	350 VA max.

^{1.} A third-wire ground is required.

Table	1-18	FMC	and	safety
IUDIC	1-10	LIVIO	unu	Suicty

Description	General characteristics
EMC	
((European Council Directive 89/336/EEC
7)	EN / IEC 61326-1:1997+A1:1998
ISM 1-A	CISPR 11:1997+A1:1999 / EN 55011:1998+A1:1999 Group 1,
	Class A
	IEC 61000-4-2:1995 / EN 61000-4-2:1995+A1:1998
	4 kV CD / 4 kV AD
	IEC 61000-4-3:1995 / EN 61000-4-3:1996+A1:1998
	3 V/m, 80-1000 MHz, 80% AM
	IEC 61000-4-4:1995 / EN 61000-4-4:1995
	1 kV power / 0.5 kV Signal
	IEC 61000-4-5:1995 / EN 61000-4-5:1995
	0.5 kV Normal / 1 kV Common
	IEC 61000-4-6:1996 / EN 61000-4-6:1996
	3 V, 0.15-80 MHz, 80% AM
	IEC 61000-4-11:1994 / EN 61000-4-11:1994
	100% 1cycle
ICES/NMB-001	Canada ICES001:1998
IOLO/ INIO OOI	Note: The performance of EUT will be within the specification over the RF immunity tests
	according to EN 61000-4-3 or EN 61000-4-6 except under the coincidence of measurement
	frequency and interference frequency.
N10149	AS/NZS 2064.1/2 Group 1, Class A
Safety	
	European Council Directive 73/23/EEC
7	IEC 61010-1:1990+A1+A2 / EN 61010-1:1993+A2
ISM 1-A	INSTALLATION CATEGORY II, POLLUTION
	DEGREE 2
	INDOOR USE
	IEC60825-1:1994 CLASS 1 LED PRODUCT
	CAN/CSA C22.2 No. 1010.1-92
SP [®] LR95111C	

Table 1-19 Analyzer environment and dimensions

Description Operating environment	General characteristics
Temperature	+5 °C to +40 °C
Error-corrected temperature range	23 °C ±5 °C with < 1 °C deviation from calibration temperature
Humidity	20% to 80% at wet bulb temperature < +29 °C (non-condensing)
Altitude	0 to 2,000 m (0 to 6,561 feet)
Vibration	0.5 G maximum, 5 Hz to 500 Hz
Non-operating storage environment	
Temperature	−10 °C to +60 °C
Humidity	20% to 90% at wet bulb temperature < 40 °C (non-condensing)
Altitude	0 to 4,572 m (0 to 15,000 feet)
Vibration	0.5 G maximum, 5 Hz to 500 Hz
Dimensions	See figure 1-1 through figure 1-3.
Weight	13.5 kg

Figure 1-2. Dimensions (front view, in millimeters)

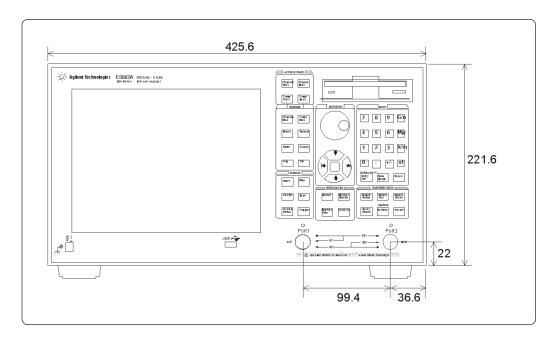


Figure 1-3. Dimensions (rear view, in millimeters)

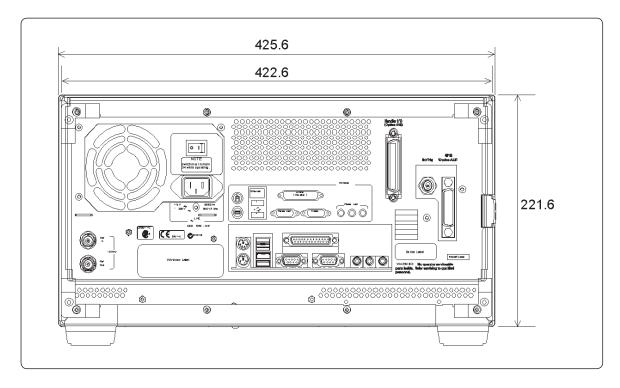
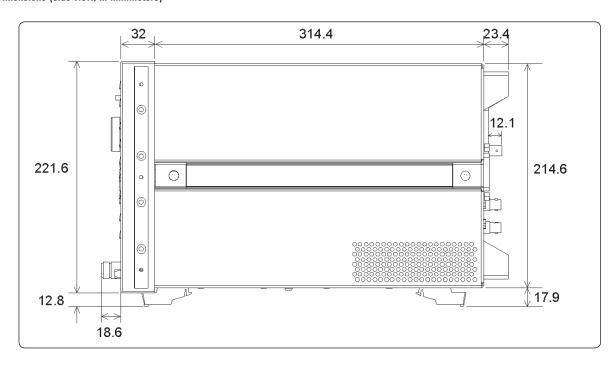



Figure 1-4. Dimensions (side view, in millimeters)

Measurement throughput summary

Table 1-20 Typical cycle time for measurement completion¹ (ms) (Display update: off)

	Number of points				
-	51	201	401	1601	
Start 1 GHz, stop 1.2 GHz, 30	kHz IF bandwidth				
Uncorrected	8	19	33	117	
2-port cal	14	35	63	230	
Start 300 kHz, stop 1.5 GHz,	30 kHz IF bandwidth				
Uncorrected	15	25	39	123	
2-port cal	27	48	75	243	
Start 300 kHz, stop 3 GHz, 30) kHz IF bandwidth				
Uncorrected	17	28	41	125	
2-port cal	31	53	80	247	

Table 1-21 Typical cycle time for measurement completion¹ (ms) (Display update: on)

	Number of points			
	51	201	401	1601
Start 1 GHz, stop 1.2 GHz, 30	kHz IF bandwidth			
Uncorrected	59	68	83	172
2-port cal	85	103	131	304
Start 300 kHz, stop 1.5 GHz, 3		-1	00	470
Uncorrected	64	74	89	178
2-port cal	95	116	144	317
Start 300 kHz, stop 3 GHz, 30	kHz IF bandwidth			
Uncorrected	66	78	91	180
2-port cal	98	121	148	322

^{1.} Typical performance.

Data transfer time¹ (ms) **Table 1-22**

Number of points				
	51	201	401	1601
SCPI over GPIB ²				
REAL 64	6	14	25	89
ASCII	51	193	383	1522
SCPI over 100 Mbps LAN (telnet) ²			
REAL 64	3	3	4	6
ASCII	92	354	510	2040
SCPI over 100 Mbps LAN (SICL-LAN) ²			
REAL 64	7	7	8	12
ASCII	9	21	34	127
COM (program executed in	the analyzer) ²			
Variant type	2	2	2	2

Typical performance.
 Measured using a VEE 6.01 program running on a 500 MHz Pentium[®] III Dell Optiplex, Transferred complex S₁₁ data, using :CALC:DATA?SDATA.

Measurement capabilities

Number of measurement channels	Up to 4 independent measurement channels. A measurement channel is coupled to stimulus response settings including frequency, IF bandwidth, power level, and number of points.	
Number of display windows	Each measurement channel has a display window. Up to 4 display windows (channels) can be displayed.	
Number of traces	4 data traces and 4 memory traces per channel	
Measurement choices	Option E5061A/E5062A-150/175: S_{11} , S_{21} Option E5061A/E5062A-250/275: S_{11} , S_{21} , S_{12} , S_{22}	
Measurement parameter conversion	Available to convert S-parameters into reflection impedance, transmission impedance reflection admittance, transmission admittance, and 1/S.	
Data formats	Log magnitude, linear magnitude, phase, expanded phase, positive phase, group delay, SWR, real, imaginary, Smith chart, polar.	
Data markers	10 independent markers per trace. Reference marker available for delta marker operation. Smith chart format includes 5 marker formats: linear magnitude/phase, log magnitude/phase, real/imaginary, R + jX, and G + jB. Polar chart format includes 3 marker formats: linear magnitude/phase, log magnitude/phase, and real/imaginary.	
Marker functions		
Marker search	Max value, min value, multi-peak, multi-target, peak, peak left, peak right, target, target left, target right, and width parameters with user-defined bandwidth values.	
Marker-to functions	Set start, stop, center to active marker stimulus value; set reference to active marker response value; set electrical delay to group delay at active marker.	
Search range	User definable.	
Tracking	Performs marker search continuously or on demand.	
Fault location functions (Option E5061A/E5062A-100)		
Transformation to distance and time domain	Selectable transformation type from bandpass, lowpass impulse, lowpass step. Selectable window from maximum, normal and minimum.	
LXI compliance	Class C (only applies to units that are shipped with firmware revision A.03.00 or later)	

Source control

Measured number of points per sweep	User definable from 2 to 1601.
Sweep type	Linear sweep, segment sweep, log sweep and power sweep.
Segment sweep	Define independent sweep segments. Set number of points, test port power levels, IF bandwidth, delay time, sweep time and sweep mode independently for each segment.
Sweep trigger	Set to continuous, hold, or single, sweep with internal, external, manual, or bus trigger.
Power	Set source power from -5 dBm (-45 dBm for option E5061A/E5062A-1E1/250/275) to 10 dBm. The power slope function compensates source power level error.

Trace functions

Display data	Display current measurement data, memory data, or current measurement and memory data simultaneously.	
Trace math	Vector addition, subtraction, multiplication or division of measured complex values and memory data.	
Title	Add custom title to each channel window. Titles are printed on hardcopies of displayed measurements.	
Autoscale	Automatically selects scale resolution and reference value to vertically center the trace.	
Electrical delay	Offset measured phase or group delay by a defined amount of electrical delay, in seconds.	
Phase offset	Offset measured phase or group delay by a defined amount in degrees.	
Statistics	Calculates and displays mean, standard deviation and peak-to-peak deviation of the data trace.	

Data accuracy enhancement

Measurement calibration	Measurement calibration significantly reduces measurement	
	uncertainty due to errors caused by system directivity, source and	
	load match, tracking and crosstalk. Full 2-port calibration	
	removes all the systematic errors for the related test ports to obtain	
	the most accurate measurements.	
Calibration types available		
Response	Simultaneous magnitude and phase correction of frequency response errors for either reflection or transmission measurements.	
Response and isolation	Compensates for frequency response and crosstalk errors of	
·	transmission measurements.	
Enhanced response	Compensates for frequency response and source match errors	
One-port calibration	Compensates for directivity, frequency response and source match errors.	
Full 2-port calibration (Option E5061A/E5062A-250/275)	Compensates for directivity, source match, reflection tracking, load match, transmission tracking and crosstalk. Crosstalk calibration can be omitted.	
Interpolated error correction	With any type of accuracy enhancement applied, interpolated mode	
	recalculates the error coefficients when the test frequencies are changed.	
	The number of points can be increased or decreased and the start/stop	
	frequencies can be changed.	
Velocity factor	Enter the velocity factor to calculate the equivalent physical length.	
Reference port extension	Redefine the measurement plane from the plane where the calibration was	

Storage

Internal hard disk drive	Store and recall instrument states, calibration data, and trace data on 10 GB, minimum, internal hard drive. Trace data can be saved in CSV (comma separated value) format. All files are MS-DOS [®] -compatible. Instrument states include all control settings, limit lines, segment sweep tables, and memory trace data.	
File sharing	Internal hard disk drive (D:) can be accessed from an external Windows [®] PC through LAN.	
Disk drive	Instrument states, calibration data, and trace data can be stored on an internal 3.5 inch 1.4 MB floppy disk in MS-DOS $^\circledR\text{-}\text{compatible}$ format.	
Screen hardcopy	Printouts of instrument data are directly produced on a printer. The analyzer provides USB and parallel interfaces.	

System capabilities

Familiar graphical user interface	The ENA-L analyzer employs a graphical user interface based on Windows [®] operating system. There are three ways to operate the instrument manually: you can use a hardkey interface, touch screen interface (option E5061A/E5062A-016) or a mouse interface.
Limit lines	Define the test limit lines that appear on the display for pass/fail testing. Defined limits may be any combination of horizontal/sloping lines and discrete data points.

Automation

	GPIB	Internal
SCPI	X	Х
COM		Х

Methods	
Internal analyzer execution	Applications can be developed in a built-in VBA® (Visual Basic for Applications) language. Applications can be executed from within the analyzer via COM (component object model) or using SCPI.
Controlling via GPIB	The GPIB interface operates to IEEE 488.2 and SCPI protocols. The analyzer can be controlled by a GPIB external controller. The analyzer can control external devices using a USB/GPIB interface.
LAN	
Standard conformity	10 BaseT or 100 BaseTX (automatically switched), Ethertwist, RJ45 connector
Protocol	TCP/IP
Function	Telnet, SICL-LAN

Web Resources

For additional literature and product information about the Agilent ENA-L visit:

www.agilent.com/find/ena

www.agilent.com

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealIdoubt

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	01 36027 71571
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	07031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
Switzerland	0800 80 53 53
United Kingdom	44 (0) 118 9276201
Other European Co	untrice

Other European Countries: www.agilent.com/find/contactus

Revised: July 2, 2009

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2009 Printed in USA, September 18, 2009 5989-0018EN

Microsoft®, Windows® and Visual Basic® are U.S. registered trademarks of Microsoft Corporation.

Pentium® is a US registered trademarks of Intel Corporation.

