

Agilent ParBERT 81250 Parallel Bit Error Ratio Tester

Product Overview Version 5.1 (Corresponds to ParBERT 81250 Software revision 5.1)

The Only Parallel Bit Error Ratio Solution for testing at 675 Mbit/s, 1.65 Gbit/s, 2.7 Gbit/s, 3.35 Gbit/s, 10.8 Gbit/s, 13.5 Gbit/s and 45 Gbit/s

Agilent ParBERT 81250

Agilent ParBERT 81250 is a modular parallel electrical and optical bit error ratio (BER) test platform, which works up to 45 Gbit/s. The ParBERT 81250 platform comprises modules that work at 675 Mbit/s, 1.65 Gbit/s, 2.7 Gbit/s, 3.35 Gbit/s, 10.8 Gbit/s and 45 Gbit/s. The system generates pseudo random word sequences (PRWS), standard pseudo random binary sequences (PRBS) and userdefined patterns on parallel lines. You can analyze bit error ratios with userdefined patterns. PRBS/PRWS or mixed data (a combination of userdefined patterns and PRBS).

ParBERT 81250 is a perfect fit for parallel-to-serial, serial-toparallel, serial-to-serial and multiple serial BER test. Examples comprise multiplexer and demultiplexer (Mux/Demux) - or SerDes (serializer/deseralizer) testing used in telecom and storage area network (SAN) ICs, multiple transmitter and receiver testing in manufacturing, amplifiers as well as 10GbE and forward error correction (FEC) device testing. ParBERT 81250 also provides data and control signals for the DUT if required.

The ParBERT Software Suite is a ready-to-use package, which offers different levels of measurement analysis:

1. Fast pass/fail measurements ideal for production 2. Output Timing measurements provide results for setup & hold times, skew between channels, phase margins, detailed Jitter results (RJ/DJ/TJ), and eye opening specification results 3. Output level measurements provide results for high/low levels, amplitudes, threshold margins and Q-factor analysis **4.** Graphical results for detailed root cause analysis - see trends clearly and fast, e.g. color and contour plots

Agilent ParBERT 81250 is particularly suitable for the following applications:

1. 10GbE device testing

- 2. Multiplexer and Demultiplexer Test
- OC-768 device testing: You can test 16:1 and 4:1 40G devices using the ParBERT 81250 45G and either 3.3 Gbit/s or 10.8 Gbit/s modules
- OC-192 device testing: The ParBERT 81250 10.8 Gbit/s modules enable testing of the serial high-speed side of Muxes/DeMuxes. Combined with 675Mbit/s, 1.6Gbit/s, 2.7Gbit/s or 3.3 Gbit/s modules you can test both sides of multiplexers/demultiplexers
- OC-48 device testing
- **3.** Characterization of SAN ICs
- 4. Manufacturing Test of multiple Transmitters, Receivers, Transceivers and Amplifiers
- 5. FEC Device Test

For more information on these applications, please see brochure p/n 5968-9250E. For information on the Agilent ParBERT 81250 45 Gbit/s, please see p/n 5988-3020EN. For more information on ParBERT 3.35 Gbit/s optical/electrical mod-ules, please see p/n 5988-5901EN. This document focuses on the ParBERT platform up to 10.8 Gbit/s.

Figure 1: ParBERT Product Family

ParBERT 81250 Key Features & Benefits

Features	Benefits
Modular, flexible and scalable platform architecture	· Grows with customer's test and application needs
Up to 128 channels @ 675 Mbit/s	· Covers a wide range of technologies and applications
Up to 64 channels @ 3.35 Gbit/s, 2.7 Gbit/s	
Up to 30 channels @13.5 Gbit/s, 10.8 Gbit/s	
Generator and Analyzer modules available from 675 Mbit/s	Allows the configuration of a system to fit the customer's
up to 45 Gbit/s	application needs
Mix of channels (generator/analyzer) and speed classes	Provides unique flexibility to test complex devices with many
	channels and/or frequencies, e.g. Serial bus applications,
	Mux/Demux (SerDes), FEC
Generate pseudo random word sequences (PRWS) and	Perform parallel BER measurements - ideal for Mux/Demux
standard PRBS up to 2 ³¹ -1; Analyze bit error ratios with user-	applications
defined data, PRBS or mixed data from parallel ports	
Generate and analyze single-ended, low voltage and	 Test logic technologies e.g. LVDS, ECL, PECL, SSTL-2
differential signals - including true differential	· Generate the necessary signals to perform margin tests,
	emulate frequency and level changes and stress your device as
	far as possible
Data generation and analysis with sequencing and looping	\cdot Generate complex sequences that contain memory-based (up
	to 32Mbit) and/or PRBS/PRWS data
	 Generate data packets with header and payload
	· React to control signals from the DUT
Auto phase & auto delay alignment	• Auto alignment of expected data with incoming data
	• Save time as you do not need to find the correct sample point
	manually - typically takes just 100ms, so ideal for
	manufacturing
Each generator or analyzer channel has independent	Allows device characterization for a wide range of technolo-
programmable control of voltage levels and timing delay	gles/applications in the semiconductor and communication
Interment for a change of an always delay (non-order)	Industry
Interrupt-free change of analyzer delay/ generator	continuous running signals for measurements where changing
delay (15.5 dbit/s and 5.55 dbit/s, other speed classes	allalyzer delay is necessaly
litter modulation (13 5 Chit/c and 3 35 Chit/c)	Allows jitter tolerance testing to be performed
Variable Cross (13.5 Gbit/s and 3.35 Gbit/s)	Provides real-world stress
Windows® 2000/NT / 0 based user software	Provide "standard" and "detailed" views for performing
	measurements fast and efficiently
Plug and play drivers	Allows remote access and simplifies remote program
r lug and play drivers	development
Measurements Suite	· DUT output timing measurement - bathtub curve with jitter
	analysis (RJ/DJ separation), skew between channels, setup
	and hold times
	· Output level measurement - amplitude information, high/low
	level and Q-factor
	· Eye opening measurement - color and contour plots
	Fast eye mask measurement - automatic threshold adjust, fast
	and efficient insights for manufacturing test
	· Comprehensive BER measurement - actual and accumulated
	BER, errors of ones and zeros, total bits transferred and file
	capturing for post-processing analysis.
	 Evel and U-factor Eye opening measurement - color and contour plots Fast eye mask measurement - automatic threshold adjust, fast and efficient insights for manufacturing test Comprehensive BER measurement - actual and accumulated BER, errors of ones and zeros, total bits transferred and file capturing for post-processing analysis.

Key Features (continued)

Perform Parallel BER measurements up to 13.5 Gbit/s

ParBERT 81250 makes testing of Mux/Demux (serializer/ deserializer) devices easier. Only ParBERT 81250 is able to generate pseudo-random-word sequences (PRWS) on the parallel side and analyze bit-error-ratios with user-defined patterns, PRBS up to 2³¹-1 or both combined.

PRBS/PRWS and memory capability

The polynomial 2^{n-1} , the PRBS algorithm and the parallel bus width define PRWS. The bits of the PRWS are assigned to parallel lines and are then multiplexed to form a PRBS (see figure 3).

Auto phase and auto delay alignment

As the latency from the input to the output is often not known exactly, or it is not deterministic, synchronization between incoming data and outcoming data has to be carried out. ParBERT 81250 has three capabilities to synchronize/align the incoming data automatically (see figures 4 and 5):

1) Data shift bit-by-bit if PRBS is used

2) Detect Word if user-defined patterns are used

3) Moving of the sampling point delay of the analyzer up to 10ns without stopping the instrument. Moving of the sampling point delay can also be used in addition to the alignment of data patterns (1 and 2) to refine the synchronization.

🚜 Workspace1 - Agile	ent 8125	0 Measuremen	ts - [Bit Error	Rate7							
Eile Edit Measure	Ele Edit Measurement Control System Window Help										
_C 🛩 🖬 🕼 »											
Start: 07/02/01 16:13:1	8 Stop: 0	7/02/01 16:13:36			Sin	gle Mode				Els	apsed Time: 15.
Port/Terminal	Reset	Actual BER	Actual Compared	Actual # of Errors	Accumulative BER	Accumulative Compared Bits	Accumulative # of Errors	Actual 0 BER	Actual 1 BER	Actual#of 0 Errors	Actual # of / 1 Errors
🖃 🔯 Measurement	1	8			8						
📋 😣 [2] Data	<u>**</u>	2.500E-001	1.040E+009	2.600E (008	8 1.244E-CO1	1.474E+010	1.834E+000	2.500E-001	2.500E-001	0.00CE+000	2.600E+008
- 🔀 [2:1] Data1		S.000E-001	5.200E+008	2.630E+008	2.502E-C01	7.329E+009	1.834E+009	5.000E-001	5.000E-001	0.00CE+000	2.600E+008
-[2.2] Data0	1	0.000E+000	5.200E+008	0.000E+000	0.000E+C00	7.409E+009	0.000E+000	0.000E+000	0.000E+000	0.00CE+000	0.000E+000
🗐 [3] Data		0.000E+000	2.080E+009	0.000E+000	0.000E+C00	2.908E+010	0.000E+000	0.000E+000	0.000E+000	0.00CE+000	0.000E+000
-[3:1] Data3		U.UUUE+UUU	5.300E+008	U.UJUE+UUU	U.UUUE+LUU	7.499E+009	U.UUUE+UUU	U.UUUE+UUU	U.UUUE+UUU	U.UULE+UUU	U.LUUE+UUU
-[3:2] Data2	**	0.000E+000	5.300E+008	0.000E+000	0.000E+C00	7.199E+009	0.000E+000	0.000E+000	0.000E+000	0.00CE+000	0.000E+000
-[3:3] Data0		0.000E+000	5.100E+008	0.000E+000	0.000E+C00	7.039E+009	0.000E+000	0.000E+000	0.000E+000	0.00CE+000	0.000E+000
[0:4] Data1	<u>6</u>	0.000E+000	5.100E+000	0.000+3000.0	0.000E+C00	7.009E+009	0.000E+000	0.000E+000	0.000E+000	0.00CE+000	0.000+3003.0

Figure 3: MUX/DEMUX Application: Relationship between PRBS and PRWS

Figure 4: Mechanism of auto-phase and auto-delay assignment

Figure 5: Standard view when choosing PRBS/PRWS patterns and data synchronization mode

Interrupt-free change of analyzer delay

The analyzer delay can be changed ±1 period whilst the instrument is running without causing it to stop see figure 6. The 13.5 Gbit/s and 3.35 Gbit/s modules can do this on the Analyzer and Generator.

🔆 Parameter Edit	tor	_ X			
Resource: Output (D	ata Output Port)	• • •			
Timing Input					
Data	Data Port				
Actual Delay	1.25	ns			
	+ N periods				
Start Delay (Start Delay (System Restarts On Change)				
Periods + Time	1.25	ns			
Periods	0.5				
Time		ns			
Delay (No Stop On Change)					
0 Period					
+1					

Figure 6: Parameter Editor for analyzer timing

Multiple frequencies

The modular architecture of ParBERT allows the use of different channels at different speeds. Therefore it is possible to combine channels of different speed classes in one ParBERT system. A ParBERT system can be configured with one or more clock groups. Each clock group is controlled from one clock module. Within one clock group (one clock module controls a group of channels) a frequency

ratio of 2^{n} , n =1,2,....10 is possible, see figure 7.

🕅 Parameter Editor					
Besource: C1 M1 Clk ("E4805B" E1 SOL					
Frequency Clock/Ref Input Exte	ernal Input	Trigger Out	put		
Period 6.41025641026	ns	Delay Offset	0		▲ ns
Frequency 156	MHz	Segment Res	solution 4		 Bit
Use Single Frequency	,	Trigger Frequency M	ultiplier 1		·
Show All (Ports, Connectors)	Frequency Multiplier	Actual Frequency	Maximal Frequency	Segm. Resolut.	Memory Depth
1: Data	16 🔸	2.50 GHz	2.67 GHz	64 Bit	8 MBit 🔺
2: Data	1 🔸	156.00 MHz	166.67 MHz	4 Bit	512 KBit
C1 M3 C1	4 🔸	624.00 MHz	666.67 MHz	16 Bit	2 MBit
C1 M3 C2	4 🔸	624.00 MHz	666.67 MHz	16 Bit	2 MBit
C1 M5 C1	1 +	156.00 MHz	166.67 MHz	4 Bit	512 KBit
C1 M5 C2	1 +	156.00 MHz	166.67 MHz	4 Bit	512 KBit
C1 M5 C3	1 +	156.00 MHz	166.67 MHz	4 Bit	512 KBit 🗾

Figure 7: Parameter Editor for setting multiple frequencies in one system

With the two clock groups any frequency ratio m/n, n=1,2,...,256 is possible. The 'application examples' show some 'two-clocksystem' configurations

Fundamental Platform Description

The idea of the ParBERT 81250 product structure is that you receive the instrument, which meets your measurement needs exactly. The ParBERT modularity offers modules and frontends. At 13.5 Gbit/s and 10.8 Gbit/s there are dedicated modules for Generators and Analyzers. At 3.35 Gbit/s, 2.7 Gbit/s, 1.6 Gbit/s and 675 Mbit/s the modules carry 2/4 front-ends. The front-ends determine which kind of output or input connectors your specific instrument has. This means front-ends determine the speed and input/output capabilities of your instrument. A mix of frontends is possible within the modules. The front-ends are placed in data modules, which are responsible for sequencing, generating and analysing of data patterns including PRBS/PRWS. These modules, plus at least one **clock module**, which generates the common system frequency of the instrument, are installed in the mainframe.

The VXI frame offers 13 slots. Assuming the use of the FireWire interface and one Clock module in place, the mainframe can hold up to 10 channels at 13.5 Gbit/s, 11 channels at the data rate of 10.8 Gbit/s, 22 channels at 3.35 Gbit/s, 2.7 Gbit/s and 1.65 Gbit/s or 44 channels at 675 Mbit/s. If more channels are needed there is the possibility of adding up to two expander frames to reach the maximum number of channels within one clock group. Additional clock modules are needed to set up systems which work with different clock speeds that are not divisible or multipliable by the factors 2, 4, 8, 16 (if E4832A is used) and 2 and 4 (if E4861A is used). For example, for testing 1:7 or 1:10 Mux/Demux devices two clock modules are required. Please check the Application Examples within the next chapter.

The ParBERT **81250 Software Suite** runs on an external PC, or a laptop, which is connected to the system via an IEEE 1394 PC link to VXI. The operating system is MS Windows[®] NT 4.0 or Win 2000. The ParBERT 81250 Software Suite consists of:

- Graphical User Interface
- Measurement Suite
- Software Tools (10GbE Tool,
- SONET/SDH Frame Generator
- VXI Plug & Play Driver

At runtime the software consists of several processes, see new figure. The firmware server controls the hardware and is the link between the graphical user interface and the Hardware Modules. Also the Measurement Software or any custom remote program can communicate with the Firmware Server. The remote access is established either by using the Plug and Play drivers from Agilent Vee or from a C/C++/Visual Basic program or by a SCPI based language via GPIB. This allows the building of a customized VXI system including other standard VXI modules.

	675 Mbit/s	2.7 Gbit/s/3.35 Gbit/s	10.8 Gbit/s	13.5 Gbit/s
Data Rate Range	333.3 Kbit/s	333.4 Mbit/s 2.7 Gbit/s	9.5 10.8 Gbit/s	500 Mbit/s 13.5
	675 Mbit/s	20.8 Mbit/s 3.35 Gbit/s		Gbit/s
Number of Channels				
within 1 Frame / + 2				
Expander Frames				
with ext. PC	44/132	22/66	11/33	10/30
Inputs/Outputs		differential & single	differential & single	differential & single
	differential & single	ended	ended	ended
Data Capability	ended	PRBS/PRWS/	PRBS/PRWS/	PRBS/PRWS/
	PRBS/PRWS/	8/16 Meg Memory	32 Meg Memory***	64 Mbit Memory
	2 Meg Memory			
Generator Formats		2.7G:DNRZ	DNRZ, separate	NRZ, DNRZ
	DNRZ, RZ, R1	50% clock	clock output**	
		DNRZ, R1, RZ		
Technology		CML, (P)ECL*,	CML, ECL,LVDS,	LVDS, CML, PECL,
addressed	TTL, (P)ECL, LVDS	LVDS, SSTL-2	SSTL-2	ECL, low voltage
				CMOS

Table 6 gives an overview on key specifications of the different speed classes:

Notes: * for PECL a BIAS Tee at Analyzer input is needed

** separate clock output is single ended only

*** balanced pattern only

Table 6: Key Specifications of ParBERT channels

E4861A ParBERT 2.7 Gb/s / 1.65 Gb/s Data Module E4862A ParBERT 2.7 Gb/s Generator Front-End E4863A ParBERT 2.7 Gb/s Analyzer Front-End E4864A ParBERT 1.65 Gb/s Generator Front-End E4865A ParBERT 1.65 Gb/s Analyzer Front-End Technical Specifications

E4861A Generator/Analyzer Module

This module holds any combination of up to two analyzer front-ends (E4863A, E4865A) and generator front-ends (E4862A, E4864A).

With front-ends E4864A and E4865A the maxiumum speed is limited to 1.65 Gbit/s. The maximum speed of 2.7 Gbit/s is achieved with frontends E4862A and E4863A.

Clock Module/Data Mode

The generator can operate in clock mode or data mode. Clock mode is achieved when the generator is assigned as a Pulse Port. Data mode is achieved when using it as a Data Port. In clock mode there is a fixed duty cycle of 50%. In data mode there is NRZ format with variable delay. The analyzer always works as Data Port with variable sampling delay. The sampling delay consists of two elements: the start delay and the fine delay. The fine delay can be varied within ±1 period without stopping.

Data Capabilities

PRBS/PRWS and memory-based data are defined by segments. Segments are assigned to a generator for a stimulating pattern, on an analyzer it defines the expected pattern which the incoming data are compared to. The expected pattern can be set up with mask bits.

The segment length resolution is the resolution to which the length of a pattern segment or mask can be set. The maximum memory per channel of the E4861A can be set in steps of 64 bits up to a length of 8192 kbits. If the 64 bit segment length resolution is too coarse, memory depth and frequency can be traded.

Figure 1: E4861A Module

Table 1: E4861A Data Generator Timing Specifications (@ 50 % of amplitude, 50 Ohm to GND)					
Frequency range* Clock/Data	Frequency range* Clock/Data mode 333.334 Mbit/s to 2.70 Gbit/s (1.65Gbit/s E4864A, E4865A)				
Delay (between channels)	Can be specified as leading edge delay in fraction of bits in each				
	channel				
Range	0 to 300 ns (not limited by period)				
Resolution	1 ps				
Accuracy	± 50 ps ± 50 ppm relative to the zero-delay placement. (From 20°C to				
	35°C without autocol)				
	± 80 ps ± 50 ppm typ. relative to the zero-delay placement and				
	temperature change within ±5°C after autocalibration				
Skew between modules	50 ps typ. after deskewing at customer levels and unchanged system				
of same type	frequency				
Pulse width	50% of period typ. in clock mode				

*See tables for front-end deratings

Table 2: E4861A Analyzer Timing All timing parameters are measured			
at ECL and levels, terminated with 50 Ohm to GND			
Sample delay= start delay + fine delay,			
fine delay can be changed without stopping			
Sampling rate*	ig rate* Same as generator		
Fine delay range ±1 period			
Sampling delay range	Same as generator		
Accuracy	Same as generator		
Resolution Same as generator			
Skew	Same as generator		

Table 3: E4861A Pattern and Sequencing

Patterns:

Memory-based PRBS/PRWS Marker Density	up to 8Mbit 2 ⁿ -1, n=7, 9, 10, 11, 15, 23, 31 1/8, 1/4, 1/2, 3/4, 7/8 at PRBS/PRWS 2 ⁿ -1, n=7, 9, 10,
	11,15
Errored	2 ⁿ -1, n=7, 9, 10, 11, 15
Extended ones or zeros	2 ⁿ -1, n=7, 9, 10, 11, 15
Clock patterns	Divide or multiplied by 2, 4, 8, 16
User	Data editor, file import
Analyzer Auto-	On PRBS or memory-based data
Synchronization:	manual or automatic by:
	Bit synchronization* with or without automatic phase alignment
	Automatic delay alignment around start sample delay
	(Range: ±10ns)
	BER Threshold: 10 ⁴ to 10 ⁹

*Bit synchronization on data is achieved by detecting a 48 Bit unique word at the beginning of the segment. Don't cares within the detect word are possible. In this mode no memory-based data can be sent within the same system. If several inputs synchronize the delay difference between the terminals, it must be smaller ±5 segment length resolution.

Table 4: Data rate range, segment length resolution, available memory for synchronization and fine delay operation

Data rate range M/bits	Segment length resolution	Maximum memory depth, bits
333.334666.666	16 bits	2,097,152
666.6671,333.333	32 bits	4,194,304
1,333.3342,666.667	64 bits	8,388,608

In general it is possible to set higher values for the segment length resolution and also at lower frequencies than are indicated in the table

 Table 5: Depending on the capability of generating PRWS and port width, almost all the combinations are possible except the following:

 PRWS
 Port Width

PRM2	Port wiath
2 ⁷ -1	No restriction
2 ⁹ -1	7
2 ¹⁰ -1	3, 11, 31, 33
2 ¹¹ -1	23
2 ¹⁵ -1	7, 31
2 ²³⁻ 1	47
2 ³¹ -1	No restriction

Sub-frequencies

For applications requiring different frequencies at a fraction of the system clock, the rate can be divided or multiplied by 1, 2 or 4. This influences the dependency between segment length resolution and maximum memory depth.

Synchronization

Synchronization is the method of automatically adjusting the proper bit phase for data comparison on the incoming bit stream. The sychronisation can be performed on PRBS/PRWS and memory based data but it is not possible on a mix of PRxs and memory-based data.

There are two types of synchronization • bit synchronization • auto delay aligment

Bit synchronization is possible to cover a bit aligment for a totally unknown number of cycles. Using memory-based data, the first 48 bit within the expected data segment will work as Detect Word which the incoming data are compared to. When the incoming data match with the Detect Word, further analysis begins.

Auto Delay aligment is performed by using the analyzer sampling delay. So there is a limited range while this is possible of ±10ns.

Using Auto Delay alignment will provide synchronization with an absolute timing relation between a group of analyzer channels. So skew measurements are possible.

Table 6: Parameters for Analyzer Front-Ends E4863A 2.7 Gbit/s (E4865A 1.65 Gbit/s)

Number of channels	1, differential or single ended
Impedance	50 Ohm typ.
	100 Ohm differential if termination voltage is
	switched off
Internal termination voltage	-2.0 to +3.0 V
(can be switched off)	
Threshold voltage range	-2.0 to + 3.0 V
Threshold resolution	2 mV
Threshold accuracy	± 1% ±20 mV
Input sensitivity (single-ended	50mV typ
and differential)	
Minimum detectable	180 ps typ. at ECL levels
pulse width	
Maximum input voltage range	Three ranges selectable:
	-2V to + 1V
	-1V to +2V
	0V to 3V
Maximum differential voltage	1.8V operating
	max. 3V
Phase Margin, with ideal input signal	>1UI - 50 ps
with generator E4862A	> 1UI-75 ps
Auxiliary out	Swing: 400 mV pp typ., AC coupled

Table 7: Parameters for Generator Front-ends E4862A 2.7 Gbit/s (E4864A 1.65 Gbit/s)			
Outputs	1, differential or single-ended		
Impedance	50 Ohm Typ.		
Formats	Clock: Duty cycle 50%±10% typ.		
	Data: NRZ, DNRZ		
Output voltage window	-2.00 to + 3.00 V		
	3.00 V to 4.5(terminated to +3V only)		
Maximum external voltage	- 2.2 to +4.7 V		
External termination voltage	-2V to +3V		
Amplitude/Resolution	low voltage CMOS 0.05 to 1.8 Vpp*/10 mV		
Accuracy HiLevel/Amplitude	±2% ±10 mV		
Short circuit current	72 mA max.		
Transition times (20%-80%)	90ps typ @ ECL,LVDS		
	110ps typ @ Vpp max		
Overshooting/ringing	20% + 20mV typ		
Jitter, Data mode	<50ps peak-to-peak		
Clock mode	<5ps, rms		

*does double into open, but outputs may switch off

Input/Output

Addressable technologies

LVDS, ECL (terminated with 50 to 0 V/-2 V), PECL (terminated to +3 V Analyzer input requires use of a Bias Tee).

Analyzer Input

The analyzer channel can be operated:

- Single-ended normal
- Single-ended compliment
- Differential

For termination there is always 50 Ohm connected to a programmable termination voltage. In differential mode there is an additional, selectable 100 Ohm differential termination. Independent of the selected termination, there is the choice of whether the analysis of the incoming signal is performed on the input or true differentially. For connecting to PECL it is recommended a Bias Tee is used. The 2.7 Gb/s analyzer offers an auxiliary output, where the differential input signal is available as a single-ended signal. The bandwidth of the Aux Output is limited to 2GHz.

Generator Output

The Generator output can be used as single-ended or differential. Enable/Disable relays provide on/off switching. When switched off internal termination is provided. It is recommended that unused outputs are either turned off or externally terminated.

The Generator outputs can work into 50 Ohm centre tapped termination or 100 Ohm differential termination. The proper termination scheme can be chosen from the editor to adapt proper level programming.

Protection

Input and Output Relays switch off automatically if maximum voltages are about to be exceeded.

E4809A 13.5 GHz Central Clock Module E4808A High Performance Central Clock Module E4805B 675 MHz Central Clock Module

Technical Specifications

Each ParBERT 81250 system

consists of at least one clock module, which generates the system clock for at least one generator or analyzer or any mix.

Please see the table to the right for a complete compatibility overview!

Sequencing

The sequencing can be used to specify the data flow:

- single
- looped
- infinitely
- event handling (branch)
- synchronization.

Event Handling

With the event handling the flow of data generation and Analysis can be influenced with external signals at run time.

Usage of Events:

- stop and go of data
- match loop
- intergration with other
- equipment (ATE)
- trigger on error

Master slave, multi-mainframe, different clock groups.

Up to 3 clock modules can be combined to run in one clock grouping by connecting the master slave cable. This is used to combine channels which do not fit into one frame into one clock group. Omitting the master-slave connection will run the channels within separated clock groups. A system can be operated using different clock groups. So a bunch of channels are combined with a clock module. The frequencies used can be totally asynchronous or m/n ratio (see clock input multiplier/divider). For separated clock groups the master slave must not be connected. Within one system the modules must always be of the same type.

Modules/Central Clock	E4805B	E4808A	E4809A
E4832A - ParBERT 675 Mb/s	•	٠	•
E4861A - ParBERT 2.7/1.6 Gb/s	٠	٠	
E4861B - ParBERT 3.35 Gb/s		٠	•
E4810A/11A - ParBERT 3.3.5 Gb/s optical		٠	•
E4866A/67A - ParBERT 10.8 Gb/s		٠	
N4872A/73A - ParBERT 13.5 Gb/s			•
E4868B/69B - ParBERT 45 Gb/s		•	

E4809A, E4808A and E4805B Sequencing Features

Number of Segments	1 to 30 (every segment looped once) 1 to 60 (no segment looped)
Looping levels	Up to 4 nested loops plus one optional infinite loop
	Loops can be set independently from 1 to 2 repetitions
Start/stop	External input, manual, programmed (stop with E4832A only)
Event handling	React on internal and external events. Details see next table

E4809A, E4808A and E4805B Event Handling

Event trigger sources

Events can be defined as any combination of the following sources.

A maximum of 10 events can be defined.
- 8-line trigger input pod for TTL signals
- VXI trigger lines TO and T1
 Any capture error/or no error detected by one of the analyzer channels
- Software command control: an event trigger command issued locally or remotely
Reactions to an event can be set per data segment immediately or deferred and
can be any combination of:
- Data segment jump

- Launch trigger pulse to the trigger output of the Clock Module
- VXI trigger lines TO and T1 can be set to 01, 10 or 11

E4809A, E4808A and E4805B Trigger Pod characteristics

Input Lines	8, single-ended	
Input levels	TTL compatible	
Input threshold	1.5 V	
Input termination	5 k Ohm pullup to +	-5 V
Absolute max. ratings for input voltages	-1.2 V to + 7.0 V	
Cable delay	11 ns typical	
sampling clock frequency	system frequency/	segment length
	resolution	
	TRIGGER OUTPUT	CLOCK/REF INPUT
Setup time*	2.5ns	-12.5ns
Hold time *	5 ns	20 ns
*** * * * * * * * * * *		

*includes the cable delay

Clock Input

Clock Input Clock Input

Zin

Sensitivity

Frequency range Indirect mode

Direct mode

Input transition/slope

Multiplier(m)/divider(n)

Clock Input (Indirect mode only)

This input runs ParBERT synchronously with an external clock. Usage of a continuous clock is necessary. Burst clock can not be used as an external clock. Two modes are selectable: Indirect external clock mode (clock module PLL is used) and Direct external clock mode (clock module is bypassed).

Trigger Output

AC coupled; 3.5mm(f)

20.834MHz...13.5GHz

m=1...256; n=1...256

m*n<=1024; m/n*input

frequency/n>=1,3MHz

30 ps typ.

50 Ohm

<150mV

frequency must fit data range input

500MHz...13.5GHz

This output will be used to deliver a trigger signal to a DUT, a Digital Communication Analyzer (Agilent 86100B Series) or as a stimulus for the Analyzer deskew.

Trigger Output	
Trigger Output	DC coupled, SMP (f)
Frequency	Tbd
Output transition/slope	70 ps typ. 10/90
Zout/Termination voltage	50 Ohm / -2 to +3V
Output voltage window	-2V to +3V
Output level	0.1 to 1.8 Vpp

E4805B	and	E4808A	Central	Clock
Module	S			

The central clock module includes a PLL (Phase-Locked Loop) frequency generator to provide a system clock. Depending on the frequency chosen, the data modules can be clocked at a ratio of 1, 2, 4, 8, 16, 32, 64 or 256 times higher or lower than the system clock.

External start/stop: The data running can be started by an external signal applied to the external input. With module E4832A there is also Stop and Gate mode.

Ext. Clock/Ext. Reference: This input runs ParBERT 81250

synchronously with an ext. clock, or when a more accurate reference is needed than the internal oscillator. Usage of a continuous clock is necessary. Burst clock cannot be used as an external clock. Maximum external clock is 2.7 GHz for the E4805B and 10.8Gbit/s for the E4808A. (Note: no improvement of jitter specifications will be achieved).

Guided deskew: Individual semi-automatic deskew per channel. The deskew probe 15447A allows deskew on the DUT's (Device Under Test) fixture.

E4805B and E4808A Clock	Module specifications	
	E4805B	E4808A
Frequency range* (can be entered as period or frequency)	1kHZ to 675 MHZ E4805B will run with:	170 kHz to 675 MHz E4808A will run with: - E4866A/E4867A in range of 9.5GHz to
E4808A Clock Module specifications	- E4861A in range of 334 MHz to 2.7GHz - E4832A in range of 334KHZ to 675 MHz	10.8GHz - E4861B in range of 20.834 MHz to 3.35GHz- E4861A in range of 334 MHz to 2.7GHz - E4832A in range of 334KHZ to 675 MHz
Resolution	1 Hz	1 Hz
Accuracy	±50 ppm with internal PLL reference	±50 ppm with internal PLL reference

May be limited or enhanced by modules or frontends

External input and ext. clock	x/ext. ref. input			
	E4805B		E4808A	
Zin/Termination voltage	50 Ohm/-2.10 V t	o 3.30 V	50 Ohm /-2.10 V	to 3.30 V
Sensitivity/max levels	400 mVpp /-3 V to	o + 6 V	200 mVpp /-3 V t	to + 6V for < 9.5Gbit/s
			300mVpp/-3V to-	+ 6V for > 9.5 Gbit/s
Coupling	dc,		dc,	
Ext. Input:	Threshold Range:	-1.40 V to +3.70 V	-1.40 V to +3.70 \	1
Ext. Clock/Ext. Ref:	ac		ас	
Input transitions/slope	< 20ns. Ext. input	active edge is selectable	< 20 ns. Ext. Inpu	It active edge is
			selectable	
Clock input	m=1256; n=12	56		
multiplier(m)/ divider (n)	m*n<=1024 m/n	* input frequency must fit		
	data range input f	requency/n>=1.3 MHZ		
PLL lock time	100ms		100 ms	
Input frequency/period				
Ext. Clock	170 kHz - 2.7 GHz		170 kHz - 10.8 GH	lz
Ext. Ref	1*, 2*, 5, or 10 MF	lz	1*, 2*, 5, or 10 M	Hz
Required duty cycle	50 ±10 %		50 ±10 %	
Latency (typical):	to trigger Output	to channel output	to trigger Output	to channel Output
Ext. input	16ns ±1 clock	46ns ±1 clock	16ns ±1 clock	46ns ±1 clock**
Ext. clock	15ns	45ns	15ns	45ns
	Add 3ns if an expa	ander frame is used	Add 3 ns if an ex	pander frame is used

* Jitter performance may be degraded

** If frequency=667MHz

Trigger Ouput

Can be used in:

clock mode

sequence mode

In sequence mode a pulse will be set to mark the start of any segment The trigger output runs to a maximum 675MHZ. If a higher speed performance clock is needed;

• A 2.7GHZ Clock can be obtained from a 2.7Gb/s channel operated as a pulse port.

• A 10.8GHZ clock is available from the 10.8 Gb/s generated module as clock output.

Trigger output characteristics E4805B and E4808A

Trigger output signals	- Clock mode (up to 675 MHz).
	- Sequence Mode
Output impedance	50 Ohm typ.
Output level	TTL (frequency < 180 MHz), 50 Ohm to GND
	ECL 50 Ohm to GND/-2 V, PECL 50 Ohm +3V
Trigger advance	30 ns typ. between trigger output and data output/sampling
	point (delay set to zero in both cases)
Maximum ext voltage	-2 V to +3.3 V
Jitter (int. reference/int.	< 10 ps rms (5ps typ.)
clock)	

General Characteristics

Mainframes: See table 34.

Save/recall: Pattern segments, settings and complete settings plus segments can be saved and recalled. The number of settings that can be stored is limited only by internal disk space.

Vector import/export: Pattern files can be imported/exported via a 3.5 inch floppy disk, LAN or GP-IB (IEEE 488.2). File format is ASCII using a STIL subset.

Programming interface: GP-IB (IEEE 488.2) and LAN. The interface to applications such as C, Visual Basic, or VEE must be installed. Agilent 81200 Plug & Play drivers for easy programming are available.

Programming language: SCPI 1992.0

Programming times: Vector transfer from memory to hardware depends on the amount of data.

On-line help: Context-sensitive.

Print-on-demand: Getting started and programming guides can be printed from .pdf files included in the ParBERT 81250 software.

Self-test: Module and system self-tests can be initiated.

Modules

Module size: VXI C-size, 1 slot.

Module type: Register-based; requires ParBERT 81250 user software E4875A supplied with the mainframes.

Weight: (including front-ends) Net: 2kg.

Shipping: 2.5 kg.

Warranty: 3 years return for repair service, depending on support option.

Re-calibration period: 1 year.

Anilont	Technolog	ادىرا ءمز	lity Sta	ndarde
Aynent	lecillolog	ics uua	πιγ σια	iiiuaiuə

The ParBERT 81250 is produced to the ISO 9001 international quality system standard as part of Agilent Technologies' commitment to continually increasing customer satisfaction through improved quality control.

Table 41: Programming Times	
	Programming time
Change of levels	6 ms typ.
Change of delay	16 ms. typ. Not applicable in run mode.
Change of period	60 ms typ. For one E4805B with one
	E4832A. Not applicable in run mode.
	Increases with the number of modules but less than
	proportional.
Stop + start	32 ms typ.
Synchronization*	50ms typ. (without phase alignment)
	110ms typ. with 20% phase accuracy @ 660MHz
	650ms typ. with 1% phase accuracy @ 660MHz
Download values:	
System with 4 channels,	< 1.5 s typ.
100,000 bit each	
System with 120 channels,	< 30 s typ.
1 Mbit each	
System with 40 channels,	< 10 s typ.
1 Mbit each	

*Add numbers for each synchronizing analyzer within one module

	rements of woodules and F	ront-Ends					
	DC Volts	+24V	+12V	+5V	-2V	-5.2V	-12V
Nodules (These spe	cifications are valid for the	module with th	e front-ends installed	1)			
E4805B Central	DC Current	0.15A	0.2A	1.8A	1.4A	3.8A	0.2A
Clock module	Dynamic current	0.0015A	0.02A	0.18A	0.14A	0.38A	0.02A
E4808A	DC Current	.35A	0.2A.	3.0A	1.2A	3.6A	0.2A
	Dynamic current	0.04 A	0.02A	0.30 A	0.12A	0.36A	0.02A
E4867A	DC Current	0.2A	1.0A	7.0A	1.5A	3.0A	0.8A
	Dynamic current	0.02A	0.1A	0.7A	0.15A	0.3A	0.08A
E4866A	DC Current	0.2A	1.0A	5.0A	1.2A	2.6A	0.5A
	Dvnamic Current	0.02A	0.1A	0.5A	0.12A	0.26A	0.05A
E4861A 2.7 Gbit/s	DC Current	0.10	0.50A	5.20A	1.80A	4.00A	0.90A
Gen./An.Module	Dynamic current	0.01A	0.05A	0.52A	0.18A	0.40A	0.09A
Remark: The power re	auirements of E4861A incl	ude the power r	equirements of any ty	wo front ends			
E4861B	DC Current	0.02A	0.02A	1.8A	0.33A	0.04A	0.A
	Dynamic current	0.01A	0.01A	0.2A	0.03A	0.05A	0.A
E4832A 675 Mbit/s	DC Current	0.10A	0.10A	2.60A	0.60A	3.60A	0.10A
Gen./An. Module	Dynamic Current	0.01A	0.001A	0.26A	0.06A	0.36A	0.01A
Remark: For the mod	le E4832A, the power spe	cifications of the	e chosen front-ends (E4835A, E4838A or I	4843A) have to be a	added to the	
power specifications	of the E4832A module to g	et the overall va	lue of the power spec	ifications			
Front-ends							
E4835A two differe	ential						
E4835A two differe Analyzer 675 Mbit	ential t/s						
E4835A two differe Analyzer 675 Mbit (E4835AZ)	ential t/s DC Current		0.2A	1.2A	0.2A	0.3 A	0.3A
E4835A two differe Analyzer 675 Mbit (E4835AZ)	ential t/s DC Current Dynamic Current		0.2A 0.02A	1.2A 0.12A	0.2A 0.02A	0.3 A 0.03A	0.3A 0.03A
E4835A two differe Analyzer 675 Mbit (E4835AZ)	ential t/s DC Current Dynamic Current		0.2A 0.02A	1.2A 0.12A	0.2A 0.02A	0.3 A 0.03A	0.3A 0.03A
E4835A two differe Analyzer 675 Mbit (E4835AZ) E4838A	ential t/s DC Current Dynamic Current DC Current		0.2A 0.02A 0.45A	1.2A 0.12A 0.18A	0.2A 0.02A 0.07A	0.3 A 0.03A 0.38A	0.3A 0.03A 0.41A
E4835A two differe Analyzer 675 Mbit (E4835AZ) E4838A Differential	ential t/s DC Current Dynamic Current DC Current Dynamic Current		0.2A 0.02A 0.45A 0.045A	1.2A 0.12A 0.18A 0.006A	0.2A 0.02A 0.07A 0.007A	0.3 A 0.03A 0.38A 0.038A	0.3A 0.03A 0.41A 0.041A
E4835A two differe Analyzer 675 Mbit (E4835AZ) E4838A Differential Generator 675 Mbi	ential t/s DC Current Dynamic Current DC Current Dynamic Current it/s		0.2A 0.02A 0.45A 0.045A	1.2A 0.12A 0.18A 0.006A	0.2A 0.02A 0.07A 0.007A	0.3 A 0.03A 0.38A 0.038A	0.3A 0.03A 0.41A 0.041A
E4835A two differe Analyzer 675 Mbit (E4835AZ) E4838A Differential Generator 675 Mbi MHz,var. Slopes	ential t/s DC Current Dynamic Current DC Current Dynamic Current it/s		0.2A 0.02A 0.45A 0.045A	1.2A 0.12A 0.18A 0.006A	0.2A 0.02A 0.07A 0.007A	0.3 A 0.03A 0.38A 0.038A	0.3A 0.03A 0.41A 0.041A
E4835A two differe Analyzer 675 Mbit (E4835AZ) E4838A Differential Generator 675 Mbi MHz,var. Slopes E4862B Generator	ential t/s DC Current Dynamic Current DC Current Dynamic Current it/s DC Current	0,2A	0.2A 0.02A 0.45A 0.045A 0.045A	1.2A 0.12A 0.18A 0.006A 0,7A	0.2A 0.02A 0.07A 0.007A 0.2A	0.3 A 0.03A 0.38A 0.038A 0.038A	0.3A 0.03A 0.41A 0.041A 0.041A
E4835A two differe Analyzer 675 Mbis (E4835AZ) E4838A Differential Generator 675 Mbis MHz,var. Slopes E4862B Generator	ential t/s DC Current Dynamic Current Dynamic Current it/s DC Current Dynamic Current Dynamic Current	 	0.2A 0.02A 0.45A 0.045A 0.045A	1.2A 0.12A 0.18A 0.006A 0,7A 0,07A	0.2A 0.02A 0.07A 0.007A 0.2A 0.02A	0.3 A 0.03A 0.38A 0.038A 0.038A 0.05A	0.3A 0.03A 0.41A 0.041A 0.041A 0.21A 0.22A
E4835A two differe Analyzer 675 Mbit (E4835AZ) E4838A Differential Generator 675 Mbit MHz,var. Slopes E4862B Generator E4863B Analyzer	ential t/s DC Current Dynamic Current Dynamic Current it/s DC Current Dynamic Current Dynamic Current DC Current	0,2A 0.02A 0.2A	0.2A 0.02A 0.45A 0.045A 0.045A	1.2A 0.12A 0.18A 0.006A 0,7A 0,07A 1.8A	0.2A 0.02A 0.07A 0.007A 0.2A 0.2A 0.2A	0.3 A 0.03A 0.38A 0.038A 0.038A 0.038A 0.05A	0.3A 0.03A 0.41A 0.041A 0.041A 0.21A 0,02A 0.21A

Table 43: Cooling requirements for modules with front-ends installed		
Modules	∆P mm H ₂ 0	Air Flow
	10°C rise	Liter/s
E4805B	0.25	3.6
E4808A	0.25	3.6
E4832A	0.30	4.7
E4861A	0.40	5.2
E4861B*	0.40*	6.6
E4866A	0.30	5.2
E4867A	0.30*	5.5

* 15°C rise

Operating temperature	10 °C to 40 °C	
Storage temperature	-20°C to +60°C	
Humidity	80% rel. humidity at 40 °C	
Power requirements	90-264 $$ Vac, \pm 10%, 47-66 Hz ,	
	90-264 Vac, \pm 10%, 300-440 Hz (not recommended	
	leakage current may exceed safety limits @ $>$ 132 Vac)	
Power available for modules	950 W for 90-110 Vac supplies	
	1000 W for 110-264 Vac supplies	
Electromagnetic	EN 55011/CISPR 11 group 1, class A + 26 dB	
compatibility		
Acoustic noise	48 (56) dBA sound pressure at low (high) fan speed	
Safety	IEC 348, UL1244, CSA 22.2 #231, CE-mark	
Physical dimensions	W: 424.5 mm, 16.71 inches	
	H: 352 mm, 13.85 inches	
	D: 631 mm, 24.84 inches	
Weight (Net)	26.8 kg 25.3 kg	
Weight (shipping)(max.)	72 kg 67 kg	