
16720A Pattern Generator Characteristics Maximum memory depth 16 MVectors Number of output channels at \leq 300 MHz clock 24 Number of output channels at \leq 180 MHz clock 48 Number of output channels at \leq 200 MHz clock 24 Number of output channels at \leq 100 MHz clock 48 Number of different macros 100 Maximum number of lines in a macro 1024 Maximum number of parameters in a macro 10 Maximum number of macro invocations 1000 20000 Maximum loop count in a repeat loop 1000 Maximum number of repeat loop invocations Maximum number of "Wait" event patterns 4 3 Number of input lines to define a pattern 5 Maximum number of modules in a system Maximum width of a vector (in a 5 module system) 240 bits Maximum width of a label 32 bits Maximum number of labels 126 Maximum number of vectors in binary format 16 MVectors Minimum number of vectors in binary format 4096 Lead Set Characteristics

Agilent 10474A 8-channel probe lead set	Provides most cost effective lead set for the 16522A and 16720A clock and data pods. Grabbers are not included. Lead wire length is 12 inches.
Agilent 10347A 8-channel probe lead set	Provides 50 Ω coaxial lead set for unterminated signals, required for 10465A ECL Data Pod (unterminated). Grabbers are not included.
Agilent 10498A 8-channel probe lead set	Provides most cost effective lead set for the 16522A and 16720A clock and data pods. Grabbers are not included. Lead wire length is 6 inches.

Data Pod Characteristics

Note: Data Pod output parametrics depend on the output driver and the impedance load of the target system. Check the device data book for the specific drivers listed for each pod.

Agilent 10461A TTL Data Pod

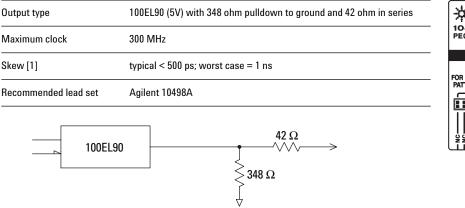
Agilent 10462A 3-State TTL/CMOS Data Pod

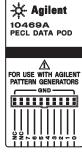
Output type	74ACT11244 with 100 Ω series; 10H125 on non 3-state channel 7 [2]	- 🔆 Agilent
3-state enable	negative true, 100 K Ω to GND, enabled on no connect	- 10462A 3-STATE TTL/ CMOS DATA POD
Maximum clock	100 MHz	
Skew [1]	typical < 4 ns; worst case = 12 ns	
Recommended lead set	Agilent 10474A	
74A	CT11244 100 Ω	

Agilent 10464A ECL Data Pod (terminated)

Output type	10H115 with 330 Ω pulldown, 47 Ω series	🔆 Agilen
Maximum clock	300 MHz	10464A ECL DATA PO (TERMINATE
Skew [1]	typical < 1 ns; worst case = 2 ns	
Recommended lead set	Agilent 10474A	PATTERN GENERA
10	H115 348 Ω -5.2 V	227.004.00

Agilent 10465A ECL Data Pod (unterminated)

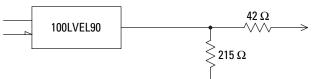

Output type	10H115 (no termination)	-🄆 Agilent
Maximum clock	300 MHz	10465A ECL DATA POD (UNTERMINATED)
Skew [1]	typical < 1 ns; worst case = 2 ns	A
Recommended lead set	Agilent 10347A	FOR USE WITH AGILENT PATTERN GENERATORS
	1115	


Agilent 10466A 3-State TTL/3.3 volt Data Pod

Output type	74LVT244 with 100 Ω series; 10H125 on non 3-state channel 7 [2]	- - 🔆 Agilent
3-state enable	negative true, 100 K Ω to GND, enabled on no connect	- 10466A 3-STATE TTL / 3.3V DATA POD
Maximum clock	200 MHz	- A FOR USE WITH AGILENT
Skew [1]	typical < 3 ns; worst case = 7 ns	
Recommended lead set	Agilent 10474A	- ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	100 Ω	80-F0004004-0

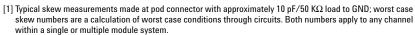
- 74LVT244
- [1] Typical skew measurements made at pod connector with approximately 10 pF/50 K $\!\Omega$ load to GND; worst case skew numbers are a calculation of worst case conditions through circuits. Both numbers apply to any channel within a single or multiple module system. [2] Channel 7 on the 3-state pods has been brought out in parallel as a non 3-state signal. By looping this output back
- into the 3-state enable line, the channel can be used as a 3-state enable.

Agilent 10469A 5 volt PECL Data Pod



Agilent 10471A 3.3 volt LVPECL Data Pod

Output type	100LVEL90 (3.3V) with 215 ohm pulldown to ground and 42 ohm in series	Agilent
Maximum clock	300 MHz	
Skew [1]	typical < 500 ps; worst case = 1 ns	FOR USE WITH AGILEM PATTERN GENERATOR
Recommended lead set	Agilent 10498A	
		— <u> </u>



Agilent 10473A 3-State 2.5 Volt Data Pod

74AVC16244

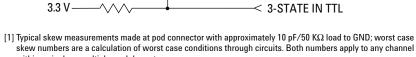
Output type	74AVC16244	
3-state enable	negative true, 38 K Ω to GND, enabled on no connect	10473A 3-STATE 2.5 V DATA POD
Maximum clock	300 MHz	<u> </u>
Skew [1]	typical < 1.5 ns; worst case = 2 ns	FOR USE WITH AGILENT PATTERN GENERATORS
Recommended lead set	Agilent 10498A	
		₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩

[2] Channel 7 on the 3-state pods has been brought out in parallel as a non 3-state signal. By looping this output back into the 3-state enable line, the channel can be used as a 3-state enable.

Agilent 10476A 3-State 1.8 Volt Data Pod

Output type	74AVC16244	-🄆 Agilent
3-state enable	negative true, 38 K Ω to GND, enabled on no connect	10476A 3-STATE 1.8 V DATA POD
Maximum clock	300 MHz	
Skew [1]	typical < 1.5 ns; worst case = 2 ns	PATTERN GENERATORS
Recommended lead set	Agilent 10498A	
74/	AVC16244	% ► 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Agilent 10483A 3-State 3.3 Volt Data Pod

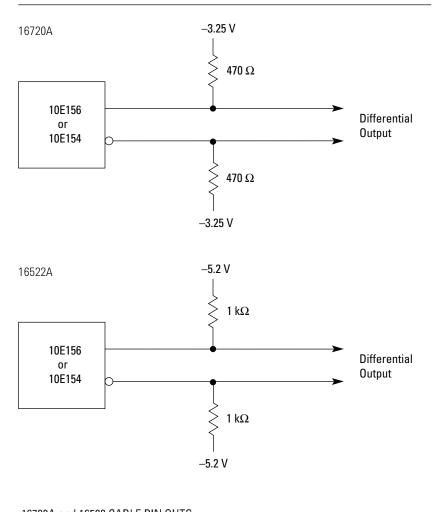

Output type	74AVC16244	-X- Agilent
3-state enable	negative true, 38 K Ω to GND, enabled on no connect	10483A 3-STATE 3.3 V DATA POD
Maximum clock	300 MHz	
Skew [1]	typical < 1.5 ns; worst case = 2 ns	PATTERN GENERATORS
Recommended lead set	Agilent 10498A	

74AVC16244

Agilent E8141A LVDS Data Pod

Output type	65LVDS389 (LVDS data lines)	
	10H125 (TTL non-3-state channel 7)	E8141A LVDS DATA POD
3-state enable	positive true TTL; no connect=enabled	Δ
Maximum clock	300 MHz	FOR USE WITH AGILENT PATTERN GENERATORS
Skew	typical < 1 ns; worst case = 2 ns	Eliiiiiiii
Recommended lead set:	E8142A	
Recommended lead set	Agilent 10498A	

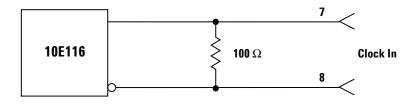
within a single or multiple module system.

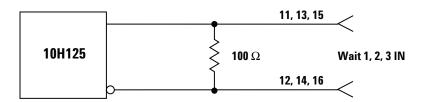

65LVDS389

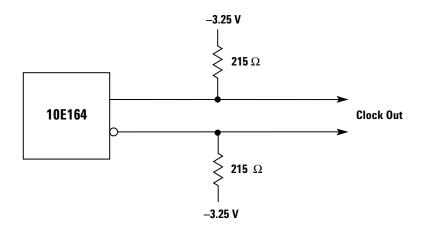
10 KΩ

ENABLE

Data Cable Characteristics Without a Data Pod

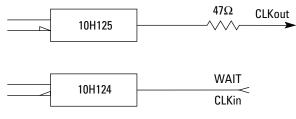

The Agilent 16720A and 16522A data cables without a data pod provide an ECL terminated (1 K Ω to -5.2V) differential signal (from a type 10E156 or 10E154 driver). These are usable when received by a differential receiver, preferably with a 100 Ω termination across the lines. These signals should not be used single ended due to the slow fall time and shifted voltage threshold (they are not ECL compatible).




16720A and 16522 CABLE PIN OUTS Gnd Gnd 7 6 5 4 3 2 1 0 Data Cable (Pod End) Gnd Gnd WITE WAITS WAITS NE CLINN NE CLIKOUT NE Gnd Gnd WITE WAITS WAITS NE CLINN NE CLIKOUT NE Gnd Gnd WITE WAITS WAITS NE CLINN NE CLIKOUT NE Gnd Gnd WITE WAITS WAITS NE CLIKN NE CLIKOUT NE Gnd Gnd WITE WAITS WAITS NE CLIKN NE CLIKOUT NE Gnd Gnd WITE WAITS WAITS NE CLIKN NE CLIKOUT NE Gnd Gnd WITE WAITS WAITS NE CLIKN NE CLIKOUT NE

Clock Cable Characteristics Without a Clock Pod

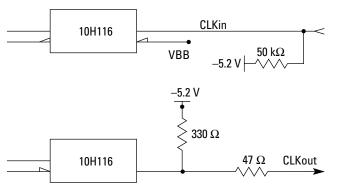
The Agilent 16720A and 16522A clock cables without a clock pod provide an ECL terminated (1 K Ω to –5.2V) differential signal (from a type 10E164 driver). These are usable when received by a differential receiver, preferably with a 100 Ω termination across the lines. These signals should not be used single ended due to the slow fall time and shifted voltage threshold (they are not ECL compatible).



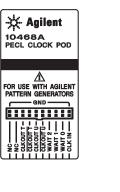
Clock Pod Characteristics

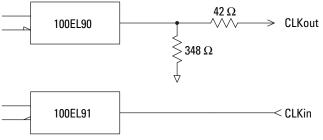
10460A TTL Clock Pod

Clock output type	10H125 with 47 Ω series; true & inverted	
Clock output rate	100 MHz maximum	
Clock out delay	approximately 8 ns total in 14 steps (16720A only); 11 ns maximum in 9 steps (16522A only)	
Clock input type	TTL – 10H124	
Clock input rate	dc to 100 MHz	
Pattern input type	TTL – 10H124 (no connect is logic 1)	
Clock-in to clock-out	approximately 30 ns	
Pattern-in to recognition	approximately 15 ns + 1 clk period	
Recommended lead set	Agilent 10474A	

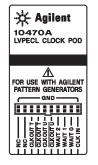

Agilent 10460A TTL CLOCK POD
FOR USE WITH AGILENT PATTERN GENERATORS

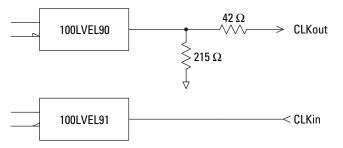
10463A ECL Clock Pod


10H116 differential unterminated; and differential unterminated; and differential with 330 Ω to –5.2V and 47 Ω series	
300 MHz maximum	
approximately 8 ns total in 14 steps (16720A only); 11 ns maximum in 9 steps (16522A only)	
ECL – 10H116 with 50 K Ω to –5.2v	
dc to 300 MHz	
ECL – 10H116 with 50 K Ω (no connect is logic 0)	
approximately 30 ns	
approximately 15 ns + 1 clk period	
Agilent 10474A	

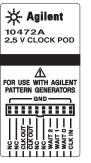


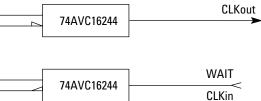
10468A 5 volt PECL Clock Pod


Clock output type	100EL90 (5V) with 348 ohm pulldown to ground and 42 ohm in series	
Clock output rate	300 MHz maximum	
Clock out delay	approximately 8 ns total in 14 steps (16720A only); 11 ns maximum in 9 steps (16522A only)	
Clock input type	100EL91 PECL (5V), no termination	
Clock input rate	dc to 300 MHz	
Pattern input type	100EL91 PECL (5V), no termination (no connect is logic 0)	
Clock-in to clock-out	approximately 30 ns	
Pattern-in to recognition	approximately 15 ns + 1 clk period	
Recommended lead set	Agilent 10498A	



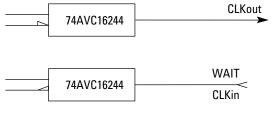
10470A 3.3 volt LVPECL Clock Pod


Clock output type	100LVEL90 (3.3V) with 215 ohm pulldown to ground and 42 ohm in series	
Clock output rate	300 MHz maximum	
Clock out delay	approximately 8 ns total in 14 steps (16720A only); 11 ns maximum in 9 steps (16522A only)	
Clock input type	100LVEL91 LVPECL (3.3V), no termination	
Clock input rate	dc to 300 MHz	
Pattern input type	100LVEL91 LVPECL (3.3V), no termination (no connect is logic 0)	
Clock-in to clock-out	approximately 30 ns	
Pattern-in to recognition	approximately 15 ns + 1 clk period	
Recommended lead set	Agilent 10498A	



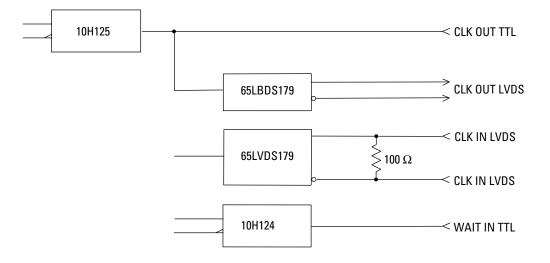
10472A 2.5 volt Clock Pod

Clock output type	74AVC16244
Clock output rate	200 MHz maximum
Clock out delay	approximately 8 ns total in 14 steps (16720A only); 11 ns maximum in 9 steps (16522A only)
Clock input type	74AVC16244 (3.6V max)
Clock input rate	dc to 200 MHz
Pattern input type	74AVC16244 (3.6V max; no connect is logic 0)
Clock-in to clock-out	approximately 30 ns
Pattern-in to recognition	approximately 15 ns + 1 clk period
Recommended lead set	Agilent 10498A



10475A 1.8 volt Clock Pod

74AVC16244	
200 MHz maximum	
approximately 8 ns total in 14 steps (16720A only); 11 ns maximum in 9 steps (16522A only)	
74AVC16244 (3.6V max)	
dc to 200 MHz	
74AVC16244 (3.6V max; no connect is logic 0)	
approximately 30 ns	
approximately 15 ns + 1 clk period	
Agilent 10498A	


Agilent 10475A 1.8 V CLOCK POD
FOR USE WITH AGLENT PATTERN GENERATORS GND LINE USE WITH AGLENT AND ADD LINE STORES OF USE WITH AGLENT AGLE

10477A 3.3 volt Clock Pod		🔆 Agilent	
Clock output type	74AVC16244	10477A 3.3 V CLOCK POD	
Clock output rate	200 MHz maximum		
Clock out delay	approximately 8 ns total in 14 steps (16720A only); 11 ns maximum in 9 steps (16522A only)	FOR USE WITH AGLIENT PATTERN GENERATORS	
Clock input type	74AVC16244 (3.6V max)		
Clock input rate	dc to 200 MHz		
Pattern input type	74AVC16244 (3.6V max; no connect is logic 0)		CLKout
Clock-in to clock-out	approximately 30 ns	74AVC16244	
Pattern-in to recognition	approximately 15 ns + 1 clk period		
Recommended lead set	Agilent 10498A	74AVC16244	WAIT CLKin

E8140A LVDS Clock Pod

Clock output type	65LVDS179 (LVDS) and 10H125 (TTL)	🔆 Agilent
Clock output rate	200 MHz maximum (LVDS and TTL)	E8140A LVDS CLOCK POD
Clock out delay	approximately 8 ns total in 14 steps	FOR USE WITH AGILENT
Clock input type	65LVDS179 (LVDS with 100 ohm)	
Clock input rate	dc to 150 MHz (LVDS)	NC C C C C C C C C C C C C C C C C C C
Pattern input type	10H124 (TTL) (no connect = logic 1)	CLK OU CLK OU CLK OU CLK OU CLK IN CLK IN CLK IN WAIT 2 WAIT 0
Clock-in to clock-out	approximately 30 ns	
Pattern-in to recognition	approximately 15 ns + 1 clk period	
Recommended lead set	Agilent 10498A	

