Contents p. 2	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	$\begin{aligned} & \text { Index } \\ & \text { p. } 89 \end{aligned}$

Economical, indispensable tools for a variety of uses in engineering, design, troubleshooting, or service.

Best Substituter Value Available

- Direct reading - No fumbling with multiple slide or rotary switches
The IET family of digital substituters uses convenient side by side thumbwheel switches. Simply dial in the desired values and use.
- Accurate

In addition to standard 1\% economical units, tolerances of $0.1 \%, 0.05 \%, 0.01 \%$, and others are available.

- Broad choice of standard and optional models with many powerful features
A full line of standard substituters will satisfy most requirements. Other IET families of precision products include:
- Laboratory standards
- Transfer standards
- Programmable control
- RTD simulation
- High power
- Very high resistance
- Error proof

Since the impedance values are set and read directly, no mistakes can be made as with rotary or slide switch decade boxes. No need to examine and sum groups of switches - simply read one number.

- Color coded

Different colored switches separate the various impedance ranges.

- Compact, convenient, and rugged

Made of high impact plastic, these substituters are very portable and reduce clutter on a busy lab bench.

OPTIONS

- Shielded case with grounding post
- Panel mounting
- Low residual impedance switch
- Protection fuse
- Programmable control (See p. 23)

The RC-box, shown on the right, combines the features and specifications of both the R-box and the C-box in one convenient package. Ideal for setting timers, oscillators, and filters, the resistance and capacitance may be used independently, in series, or in parallel. A shorting link allows them to be coupled or separated.

RC-box RCS Series
Digital ResistanceCapacitance Substituter

R-box
RS Series
Digital
Resistance
Substituter

L-box

LS Series
Digital
Inductance
Substituter

Available from 0.01Ω to 299,999,999.9 Ω (RS-201 shown)

Available from 1 pF to $999.9999 \mu \mathrm{~F}$ (CS-300 shown)

Available from $1 \mu \mathrm{H}$ to 99.99999 H (LS-400 shown)

$\begin{aligned} & \text { Contents } \\ & \text { p. } 2 \end{aligned}$	Applic. pp. 4-8	Selection pp. 9-11	Products pp. 12-87	GenRad products pp. 50-87	Index p. 89	DecadeSubstitutersResistance - Capacitance - Inductance
RS •CS •LS • Series			p. 2 of 2			

SPECIFICATIONS - STANDARD MODELS

Model	RS-200	RS-201	RS-200W	RS-201W	CS-300	CS-301	RCS-500	RCS-502	LS-400	LS-400A
Type of Substituter	Resistance	Precision Resistance	Wide Range Resistance	Wide Range Precision Resistance	Capacitance	Precision Capacitance	ResistanceCapacitance	Precision ResistanceCapacitance	Wide-Range Inductance	Inductance
Accuracy*	$\pm(1 \%+25 \mathrm{~m} \Omega)$	$\pm(0.1 \%+25 \mathrm{~m} \Omega)$	$\pm(1 \%+30 \mathrm{~m} \Omega)$	$\pm(0.1 \%+30 \mathrm{~m} \Omega)$	$\pm(4 \%+3 \mathrm{pF})$	$\pm(1 \%+3 \mathrm{pF})$	$\begin{aligned} & \text { Combines } \\ & \text { RS-200 and } \\ & \text { CS-300 } \end{aligned}$	$\begin{aligned} & \text { Combines } \\ & \text { RS-201 and } \\ & \text { CS-301 } \end{aligned}$	$\pm(2 \%+0.5 \mu \mathrm{H})$	$\pm(2 \%+0.5 \mu \mathrm{H})$
Decades	7		9		6				4	3
Range	0-9,999,999 Ω		0-99,999,999.9 Ω		0-99.9999 $\mu \mathrm{F}$				0-9.999 H	$0-999 \mathrm{mH}$
Resolution	1Ω		0.1Ω		100 pF				1 mH	1 mH
Type of Components	Metal film resistors; wirewound or resistance wire for 0.9Ω and under				$100-900 \mathrm{pF}:$ mica $0.001-0.009$ $\mu \mathrm{~F}:$ polystyrene $0.01-0.9 \mu \mathrm{~F}:$ polycarbonate $1-9 \mu \mathrm{~F}:$ polyester $10-90 \mu \mathrm{FF}$ polarized tantalum				Toroidal Inductors	
Ratings	$0.5 \mathrm{~W}^{* *}$				$100 \mathrm{~V}(20 \mathrm{~V}$ for $10-100 \mu \mathrm{~F})$				See table below	
Residual Impedance \dagger	$0.3 \Omega(0.04 \Omega /$ dec. $) \dagger$, typical		0.3Ω (0.04 $\Omega /$ dec. $) \dagger$, typical		$30 \mathrm{pF}(5 \mathrm{pF} /$ dec $)$ typical				$0.2 \Omega(0.04 \Omega$	dec.) \dagger, typical
Physical	$\begin{aligned} & 8.1 \times 7.9 \times 5.6 \mathrm{~cm} ; 184 \mathrm{~g} \\ & (3.2 \times 3.1 \times 2.2 \mathrm{in} ; 6.5 \mathrm{oz} .) \\ & \hline \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm} ; 235 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in} ; 8.3 \mathrm{oz}) \\ & \hline \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm} ; 235 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in} ; 8.3 \mathrm{oz}) \end{aligned}$		$\begin{aligned} & 18.8 \times 11 \times 6 \mathrm{~cm}, 410 \mathrm{~g} \\ & (7.4 \times 4.3 \times 2.4 \mathrm{in}, 14 \mathrm{oz}) \end{aligned}$		$\begin{aligned} & 12 \times 7.9 \times 5.6 \mathrm{~cm}, 230 \mathrm{~g} \\ & (4.7 \times 3.1 \times 2.2 \mathrm{in}, 8 \mathrm{oz}) \\ & \hline \end{aligned}$	

* Accuracy after subtraction of the Residual Impedance; traceable to NIST.
LS-400 and LS-400A Test Conditions: 1 kHz; 1 Vrms; series model; $23^{\circ} \mathrm{C}$.
** Higher power resistance substituters (1 W or higher) available; see optional models below or HPRS data sheet.
\dagger Residual Impedance may be reduced to 0.04Ω or 5 pF for lowest decade with LR Option. This makes for more effective usage at low impedances. Lowest decade is isolated from others with a switch when desired.

Additional information for Inductance Substituters

Inductance	Frequency Range	Max. Q	Rating
$0.1-0.9 \mathrm{mH}$	$300 \mathrm{~Hz}-2 \mathrm{MHz}$	$100 @ 800 \mathrm{kHz}$	700 mA
$1-9 \mathrm{mH}$	$300 \mathrm{~Hz}-1 \mathrm{MHz}$	$80 @ 40 \mathrm{kHz}$	500 mA
$10-90 \mathrm{mH}$	$300 \mathrm{~Hz}-800 \mathrm{kHz}$	$80 @ 40 \mathrm{kHz}$	300 mA
$0.1-0.9 \mathrm{H}$	$300 \mathrm{~Hz}-200 \mathrm{kHz}$	$40 @ 20 \mathrm{kHz}$	100 mA
$1-9 \mathrm{H}$	$200 \mathrm{~Hz}-20 \mathrm{kHz}$	$30 @ 8 \mathrm{kHz}$	20 mA
$10-90 \mathrm{H}$	$200 \mathrm{~Hz}-6 \mathrm{kHz}$	$60 @ 2 \mathrm{kHz}$	4 mA

OPTIONAL MODELS

In order to satisfy any requirements for decade substituters, construct a part number from the table below, or consult

IET Labs.

* See HARS and HACS Series for standards grade resistance and capacitance substituters.

OPTIONS

-CC-25 Dual Lead Clip - plugs into dual binding posts for convenient lead connections
-LR Residual Impedance is reduced to 0.04Ω or 5 pF on lowest decade
-SC \quad Shielded case with grounding terminal
-PM Panel mounting version
-FP Unit supplied with series 2 A fuse for added protection (User may substitute other fuses; residual impedance will increase by 0.06Ω for 2 A fuses)
-LP Unit supplied with low profile binding post
OTHER VERSIONS
Programmable Version High Power Version High Accuracy Version High Resistance Version

See PRS/PCS/PLS data sheet (p. 17)
See HPRS data sheet (p. 16)
See HARS data sheets (p. 11)
See HRRS data sheet (p. 15)

IET LABS, INC. inte GenRad $_{\text {Tradition }}$

