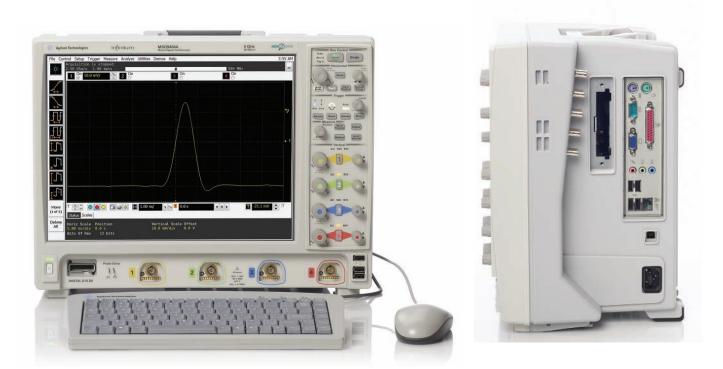
Agilent Infiniium 9000 Series Oscilloscopes

Data Sheet

Engineered for broadest measurement capability

If you haven't purchased an Agilent scope lately, why should you consider one now?

If you're like most engineers, you never know what your next project will demand from you. You need an oscilloscope that can adapt to a wide variety of debug and test challenges.


That's why we designed our new Infiniium 9000 Series oscilloscope to meet a full range of needs.

First we built in the powerful features you'd expect in any Infiniium scope. Then we engineered the scope for the broadest measurement capability, so it would be the most indispensable tool in your arsenal.

There is no better way to experience the superiority of the Infiniium 9000 Series scopes than to see it.

Contact Agilent today to request an evaluation.

Or visit: www.agilent.com/find/9000

The Infinitum 9000 Series offers bandwidths up to 4 GHz. Each model, equipped with a large 15" XGA LCD display, comes in a whisper-quiet package that is just 9" (23 cm) deep and weighs only 26 pounds (11.8 kg).

Model	Analog bandwidth	Analog sample rate 4-channel/2-channel	Standard memory 4-channel/2-channel	Scope channels	Logic channels
DS09064A	600 MHz	5 GSa/s/10 GSa/s	20 Mpts/40Mpts	4	-
MS09064A	600 MHz	5 GSa/s/10 GSa/s	20 Mpts/40Mpts	4	16
DS09104A	1 GHz	10 GSa/s/20 GSa/s	20 Mpts/40Mpts	4	-
MS09104A	1 GHz	10 GSa/s/20 GSa/s	20 Mpts/40Mpts	4	16
DS09254A	2.5 GHz	10 GSa/s/20 GSa/s	20 Mpts/40Mpts	4	-
MS09254A	2.5 GHz	10 GSa/s/20 GSa/s	20 Mpts/40Mpts	4	16
DS09404A	4 GHz	10 GSa/s/20 GSa/s	20 Mpts/40Mpts	4	-
MS09404A	4 GHz	10 GSa/s/20 GSa/s	20 Mpts/40Mpts	4	16

What makes the Infiniium 9000 Series the go-to scope for a whole range of test and debug challenges?

It's three instruments in one

- 1. Scope: The powerful features of our Infiniium Series oscilloscopes coupled with superior specifications give you precise signal representation.
- 2. Logic analyzer: Fast deep-memory digital channels let you see critical data values and timing relationships.
- 3. Protocol analyzer: The world's first scope-based protocol viewer with multi-tab viewing. Quickly drill and move between protocol and physical layers.

It offers the widest range of debug and compliance application software

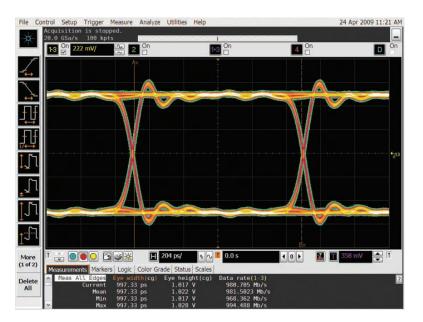
Need accurate answers to your measurement questions? The Infiniium 9000 Series offers the largest range of application-specific software for debug, analysis and compliance testing. Which application is right for you? Take a look at the possibilities on pages 7-12.

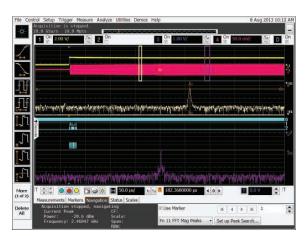
It's sized to fit your environment

Limited bench space? It has a small footprint and thin profile Height: 12.9" (33 cm); width: 16.8" (43 cm); depth: just 9" (23 cm)

Need to share the scope? It's light weight: 26 lbs. (11.8 kg)

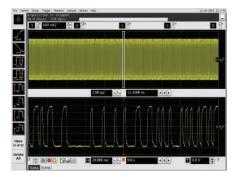
Need to see lots of signals? It has the biggest screen: 15" (23 cm) XGA



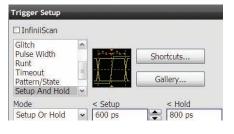

It's three instruments in one

1. Oscilloscope

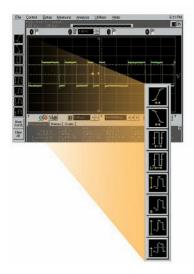
High-performance scope channels ensure superior viewing of signals under test. All models incorporate a powerful, feature-packed Infiniium oscilloscope with responsive deep memory.


Up to 4 GHz bandwidth and 20 GSa/s high sample rates guarantee you'll see a precise representation of the analog characteristics of signals you're testing.

Mask tests, histograms and a wide variety of functions such as the gated FFTs in the above image provide deep signal analysis.


Responsive deep memory

With standard 20 Mpts/ch, and up to 1 Gpts/ ch of memory, you can capture long time periods while retaining fast sample rates. Fast update rates mean your scope stays responsive with deep memory on, ensuring precise representation of analog signals.


Advanced triggering

Advanced triggers are essential when you are investigating suspected problems. Infinitum offers a full range of advanced triggers to help you isolate and capture the condition you need to characterize. The 9000 Series simplifies trigger setups by using intuitive dialog boxes with descriptive graphics.

Drag and drop measurements

It's simple: drag an icon from the measurement bar and drop it on the cycle you want to measure. You can make up to ten measurements on your waveforms. All of the measurements appear at the bottom of the display with statistics and are color-coded to the channel you are measuring.

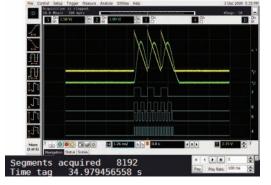
It's three instruments in one

2. Logic analyzer

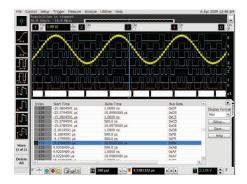
MSO models add 16 high-speed timing channels with standard 128 Mpts digital memory, allowing you to retain fast 2 GSa/s sample rates over long periods of time.

Use the timing channels to evaluate control signal relationships and data buses up to 16 bits wide. Use symbols to more quickly interpret waveforms.

Designing with Altera or Xilinx FPGAs? Use the FPGA dynamic probe for rapid internal FPGA measurements. Using I²C, SPI, RS-232, or low- or full-speed USB? Use the digital channels to acquire and decode these buses, preserving analog channels for other time-correlated measurements.


Digital and mixed-signal trigger

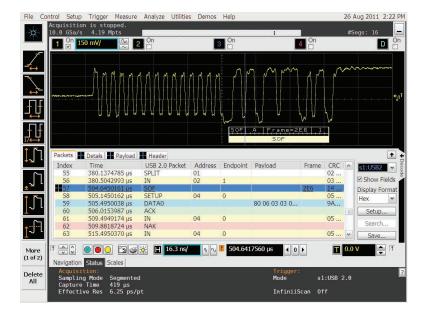
Trigger on and display individual signals or buses. With precise time-correlation between analog and digital signals, confidently trigger across any combination of analog and digital signals simultaneously.


Industry's only segmented memory for both analog and digital channels

Capture short bursts without consuming memory during periods when the trigger condition is not met. Agilent is the only vendor that supports segmented memory capture on both analog and digital channels.

Waveform and Listing Windows

View buses as waveforms or easily follow events in the listing window expandable to the entire display. A blue tracking marker provides time-correlation between waveform and listing displays.

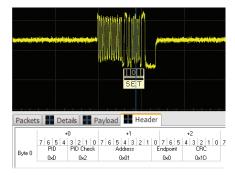

It's three instruments in one

3. Protocol analyzer

Does your design include a serial bus that is a key point for testing or debugging? Add protocol analysis capability to your scope for:

• CAN	• FlexRay	• I ² C	• JTAG	۰LIN	• MIPI D-Phy
• PCle	• RS-232/UART	• SATA	• SPI	• USB	•8B/10B

• digRF


Quickly move between physical and protocol layer information using the time-correlated tracking marker. Display protocol content using waveform symbols and the industry's first multi-tab protocol viewer. The packets tab shows a high level view of the packet over time.

Index Time IZ C Packet Addr R/W Ad Data 24 -3.98133153 ms Restart 7-bit Addr 50 Write Ack. 10 47 49 4C 45 4E 54 25 -3.67551153 ms Start 7-bit Addr 50 Write Ack. 11 47 49 4C 45 4E 54 26 -2.60395153 ms Start 7-bit Addr 50 Write Ack. 10 4D 53 4F 27 10.78847 µs Start 7-bit Addr 50 Write Nack. 14 29 323.80847 µs Restart 7-bit Addr 50 Write Nack. Setup Setup 30 4938.928491 µs Restart 7-bit Addr 50 Write Nack. Setup Search 31 654.82847 µs Restart 7-bit Addr 50 Write Nack. Search Search	e	Control				Analyze	Utilities	Demos	6 Helj)			2	9 Apr 2011	3:00
Image: Construction of the second	ė											ř.			[
S3 4F 93 FF FF FF Factors Factors Factors Factors Factors Factors	T		On 20			On 2.0	0 V/		0	1		On		1	-
FF FF<	7									6				2	
Packets Detail Paybod Header Index Time 122 Packets Detail Paybod Index Time 122 Packets Dotail Packets Index Time 123 Packets Dotail Packets Index Time Time Display Form Packets Packets Index Time Start 7-bit Addr So Write Nack Packets Index Time Time Start 7-bit Addr <td< td=""><td>(</td><td></td><td>53</td><td></td><td>1 1 1</td><td>4F</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Condition of the</td></td<>	(53		1 1 1	4F	10								Condition of the
Packets Detais Paybod Header Index Time IZ2 Packet Addr Star Pastor Accord			EE			FF									3
Image: Star Park Addr Star Par	1		1000			10001									
Star Rest Rest <th< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>	•														0
Star Rest Rest <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td>Third crowl</td><td>Tilling of the</td><td>Thingson</td><td>ndi Alfri</td><td>mann</td><td></td><td></td><td>nniz Indo</td><td></td><td></td></th<>					-	Third crowl	Tilling of the	Thingson	ndi Alfri	mann			nniz Indo		
Star Rest Res Rest Rest <thr< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_ []]</td><td></td><td></td><td></td><td></td><td></td><td></td></thr<>	-								_ []]						
Star Rest Res Rest Rest <thr< td=""><td>]</td><td>- </td><td></td><td></td><td>A=501</td><td>A=501</td><td>A=50</td><td>A=5</td><td></td><td>= 5 01</td><td>A=501 A=50</td><td>I A=5</td><td>OI A=</td><td>501 A=5</td><td>ना</td></thr<>]	- 			A=501	A=501	A=50	A=5		= 5 01	A=501 A=50	I A=5	OI A=	501 A=5	ना
Index Time I2C Packet Addr R/W Ad Data 24 -3.98133153 ms Restart 7-bit Addr 50 Write Ack 016 02192 25 -3.67551153 ms Restart 7-bit Addr 50 Read Ack 41 47 49 42 45 4E 54 02 50 ms 02192 26 -2.60395153 ms Start 7-bit Addr 50 Write Ack 10 4D 53 4F 02192 01932 8947 µs Bastart 7-bit Addr 50 Write Nack 124 123.280847 µs Restart 7-bit Addr 50 Write Nack 124 124.2847 µs 124.2847 µs Restart 7-bit Addr 50 Write Nack 124.284 124.2847 µs 124.2847 µs Restart 7-bit Addr 50 Write Nack 124.2847 µs Setup Set	4	¥ _			Star										
Index Time I2C Packet Addr R/W Ad Data 24 -3.98133153 ms Restart 7-bit Addr 50 Write Ack 06 9219C 25 -3.67551153 ms Restart 7-bit Addr 50 Write Ack 104 74 94 C4 54 E 54 26 -2.60395153 ms Start 7-bit Addr 50 Write Ack 104 D 53 4F 27 10.78847 µs Start 7-bit Addr 50 Write Nack 104 D 53 4F 29 322.80847 µs Restart 7-bit Addr 50 Write Nack Setup 29 322.80847 µs Restart 7-bit Addr 50 Write Nack Setup 31 654.82847 µs Restart 7-bit Addr 50 Write Nack Setup	č			-	2								_		
24 -3.98133153 ms Restart 7-bit Addr 50 Write Ack 06 25 -3.67551153 ms Restart 7-bit Addr 50 Write Ack 147 49 4C 45 4E 54 26 -2.60395153 ms Start 7-bit Addr 50 Write Ack 10 40 53 4F 27 10.78847 µs Start 7-bit Addr 50 Write Nack 10 40 53 4F 29 323.80847 µs Restart 7-bit Addr 50 Write Nack Biglay Forn 30 493 82847 µs Restart 7-bit Addr 50 Write Nack Biglay Forn 31 654 82847 µs Restart 7-bit Addr 50 Write Nack Search	J			Contraction of the	Payload	and the second second second									1
25 -3.67551153 ms Restart 7-bit Addr 50 Read Ack 41 47 49 4C 45 4E 54 Image: Show Field 26 -2.60395153 ms Start 7-bit Addr 50 Write Ack 10 4D 53 4F Image: Show Field 27 10.78847 µs Start 7-bit Addr 50 Write Nack Image: Show Field <													1	s2:12C	*
26 -2.60395153 ms Start 7-bit Addr 50 Write Ack 10 4D 53 4F IDisplay Form 27 10.78847 µs Start 7-bit Addr 50 Write Nack 10 4D 53 4F Hex Hex 27 10.78847 µs Start 7-bit Addr 50 Write Nack 10 4D 53 4F Hex Hex Hex Hex Start 7-bit Addr 50 Write Nack Start 7-bit Addr Start	ſ											45 54		Show	Fields
27 10.78847 µs Start 7-bit Addr 50 Write Nack III 28 171.80947 µs Restart 7-bit Addr 50 Write Nack III 29 323.80947 µs Restart 7-bit Addr 50 Write Nack Setup 30 393.2837 µs Restart 7-bit Addr 50 Write Nack Setup 31 654.8247 µs Restart 7-bit Addr 50 Write Nack Search	7											12.34		a minutes as	10000
28 171.80847 µs Restart 7-bit Addr 50 Write Nack Piez 29 332.80847 µs Restart 7-bit Addr 50 Write Nack Setup 30 493.82847 µs Restart 7-bit Addr 50 Write Nack Setup 31 654.82847 µs Restart 7-bit Addr 50 Write Nack Search	×														
493.82847 µs Restart 7-bit Addr 50 Write Nack Search Search	Г							50		Nack				Hex	۲
Image: Constraint of the second sec	J	· -	29	332.8084	7 us	Restart 7	-bit Addr	50	Write	Nack				Setu	D
S1 0.94,82647 µs Restart 7-bit Addit 50 Write Nack	~	- 11	30	493.8284	7 µs	Restart 7	-bit Addr	50	Write	Nack					
22 015 02047 vs. Dastast 7 bit Adds 50 Million Alask				654.8284	7 µs				Write	Nack				Searc	:h
32 815.82847 µs Restart 7-bit Addr 50 Write Nack Y Save		· I I .	32	815.8284	7 µs	Restart 7	-bit Addr	50	Write	Nack			1	Save	al
		e				× L	:00 µs/	80	 - 	21.000	uuuu ha		<u>+</u> الليار	-40 V	•
lore T 💭 💭 💭 🖓 🛞 🗎 200 μs/ 🛛 δ Λ 👖 621.6000000 μs 🖣 0 🕨 🔳 1.40 ∨ 🚍		21													
of 2) Status Scales		2) Sta				577									
of 2) Status Scales Acquisition: Trigger:	of	2) Sta	cquisit	ion:		217									
f(2) Status Scales	of :	2) Sta te A	cquisit ampling	ion: Mode R									2:1²C	_	

Use any combination of analog or digital channels for serial protocol decode, with up to four buses decoded simultaneously.

Trigger Setup
InfiniiScan Edge Edge Transition Serial Edge Then Edge Giltch Pulse Width
Setup Type Token
SETUP
Fields <select field=""></select>

Protocol-level triggering makes it easy to isolate events with pinpoint accuracy.

Header tab shows packets in a databook format. Hovering on any tab reveals additional detail.

Widest range of debug and compliance software applications: serial protocol-level

Trigger and view on-screen serial decode of I²C packets.

6C 65 6E 74	
Rx Source	Tx Source
	31
41	
67	

Trigger on and decode RS-232/UART transmission.

	698 mW/	112 State 114		9n			۵
					Lin Pag		
310 320 320 321 321 323	Detail Product Tarran 10.0706000	CAN Rahrt Driverded Barr Britended Date Standard Nets Standard Nets Standard Nets	olie Franse 625 ofer Transe 625 ofer Transe 605 ofer Transe 605 ofer Transe 685	ether 200 0 40, 0 40, 3	Delo 00 01 02 02 04 05	-1	Elson fier Display Fars Hex
22	1.0000042 mm 1.0001040 mm 5.0017040 mm	Manufact Ren Denderd Ren Extracted Calo Extracted Ferr	ota frana 000 Franci 000 ute Fostar 025	s. An.	95 A6 10 42		Set D. Set In.

Trigger on and decode CAN, LIN and FlexRay serial packets.

PAD Andrew Martine Marti

Import BSDL files and decode JTAG scan chain activity.

I²C/SPI serial trigger and decode (N5391B or Option 007 on new scope purchases)

This application displays real-time time-aligned decode of I²C and SPI serial buses. Hardware-based triggering means triggering reliably, even on the most infrequent events.

This application works on all models and can use any combination of scope or logic acquisition channels.

For more information: www.agilent.com/find/9000_I2C-SPI

RS-232/UART serial decode and trigger (N5462B or Option 001 on new scope purchases)

This application eliminates the need to manually decode bus traffic. Using data captured on the scope or logic channels, the application lets you easily view the information sent over an RS-232 RS-422, RS-485 or other UART serial buses.

Display real-time time-aligned decode of transmit and receive lines. Hardware-based triggering means triggering reliably, even on the most infrequent events.

This application works on all models and can use any combination of the scope or logic acquisition channels.

For more information: www.agilent.com/find/9000_RS-232

CAN, LIN and FlexRay triggering and decode (N8803B or Option 008 on new scope purchases)

Trigger on and view both protocol layer information and physical layer signal characteristics for CAN, LIN and FlexRay buses. Numerical decode values are automatically displayed and synchronized below the captured signal or seen in protocol viewer.

Hardware-based triggering for CAN and LIN means triggering reliably, even on the most infrequent

events. FlexRay uses software-based protocol triggering.

This application works on all models and can use any combination of scope or logic acquisition channels.

For more information: www.agilent.com/find/9000_CAN

JTAG (IEEE 1149.1) triggering and decode (N8817A or Option 042 on new scope purchases)

This application displays real-time time-aligned decode of JTAG (IEEE 1149.1) TDI and TDO signals. The application eliminate the difficult task of manually determining JTAG TAP controller states, instruction and data register decode, and flags error conditions. The application includes scan chain description features including the ability to import .bsdl files for each device and displays device names and opcodes in the protocol listing.

This application works on all models and can use any combination of scope or logic acquisition channels.

For more information: www.agilent.com/find/9000_JTAG

Widest range of debug and compliance software applications: serial protocol and FPGA

Alegalotti ann Allay	4.39 Mpts	100		0			_	
18	1.00 %	2 2 1.00 17	100	Ť.		18	_	
		CONTRACTOR OF						
						nin j		
1			_ ارتبال					-
11					1	1	12244	12
10	- 0	A7A1					1.6	
			11111 A.C			1111	- ******	
Щ		1.111	шц		-			-
Ц		1.111	WI4		-			
Factoria	Detan II Pavlasi	II mater	H.H.H.					
15004	TPWITI	USB 2.0 Packet	Address	Endpower	Terioad	Fare	cic :-	1490
3 (04	1000 51.131047 us	USB 2.0 Packet	Address 92	Endoced	A STATISTICS			
15008	TPWITI	USB 2.0 Palled OUT DETAL		Endoced.	Parisal 2211 4634 al.		CIC :	
2 the 288 288 1178	51.111047 ps -70.040067 ps	USB 2.0 Packet		Endpoint.	A STATISTICS		2-	Disation impix
2 chu 288 288 11,200 271 372	1000 51.131047 us	USB 2.0 Palkot OUT DATAL		Endowed.	A STATISTICS		24 M	inun 1993
2 cho 288 288 288 278 378 378 378 273	5 124521 18 -71.042527 18 -71.042527 18 -73.1245521 18 -1.42585511 18 -1.42595511 18	USB 2.0 Packet OUT DATAL SOF INFO: SSR INFO: S	42	Endored.	A STATISTICS		H H	inun 1993
2 chr 288 288 288 278 278 278 278 274	Tany 61,121047 ps 78,040007 ps 61,020007 ps 61,020007 ps 61,020007 ps 61,020007 ps 61,020007 ps 61,020007 ps 62,02007 ps 50,701175 ps	USB 2.0 Packet OUT DATAL SOF PRESS DA OUT		Endowet	2271; 4634 ab		NA H DI	Unute Tops Set
2000 2888 2898 2010 2010 2010 2010 2010 2010 2010 201	Town 81,121949.25 -70,040507.25 -71,040507.25 -71,04597.16 -71,478959.16 -71,478959.16 -71,478959.16 -71,478959.16 -71,1775.26 -71,1775.26	USB 2.0 Packet OUT DATAL BOY PRESSA DV OUT DATAS	42	Endpored.	A STATISTICS		H H	
2 day 2 4 8 2 4 8 2 4 8 2 4 8 2 7 1 2	Town 61.111047 ps -71.040007 ps -7.128501 ps -1.478050 ps 50.701177 ps 50.701177 ps 50.701177 ps 50.701177 ps	USB 2.0 Packet OUT DATAL SCP PRESER DI OUT DATAS ACX	42 81 82	Endport I	2271; 4634 ab		NA E SAL	
2004 288 298 299 201 201 201 201 201 201 201 201 201 201	11.111040 pp 11.111040 pp -70.040007 pp -7.124502 pp -1.4738059 pc 14.422339 pp 50.711173 pp 51.474535 pp 100.109159 pp 100.009159 pp 100.009159 pp	USB 2.0 Pocket OUT DATAL SOF POCESS DO DATAL DATAL DATAL OUT OUT	42	Endoord 1	2371 4634 ab. 1954 WHI 15.		NA E SAL	Disate Trans
2004 288 208 201 201 201 201 201 201 201 201 201 201	Town 61.111047 ps -71.040007 ps -7.128501 ps -1.478050 ps 50.701177 ps 50.701177 ps 50.701177 ps 50.701177 ps	USB 2.0 Packet OUT DATAL SCP PRESER DI OUT DATAS ACX	42 81 82	Endower I I I	2271; 4634 ab		NA H DI	

Trigger on and decode USB packets.

1 3°		u anhi an a		
		LPET		134(Tet
		E F		n n
a president of the second second second				
Intern II Secol II State			-	-
Pederte III decan III Facilia Jodes Time 5 053,5960 on 6 1,5050000 ps	NOR OUT V1.01.00 CRC Overk Packet Sync Event, V1.Serv, End Color Made (Orb Of Connewed)	Dete 10		Min Bitter District
S 635.5%60 on	NIPE DET V1.01.00 CRC Overk Packet Switz Event, V Serv, End	11 1	No. Ourver	Date

Trigger on and decode MIPI packets

Trigger on and decode PCIe serial packets.

Trigger on and decode SATA serial packets

USB serial trigger and protocol viewer (N5464B or Option 005 on new scope purchases)

Trigger on and quickly view USB packets, payload, header and detail information. Powerful time-correlated views of waveform and symbol, to the bit level, make it easy to isolate communication faults to logic or analog sources.

USB hardware-based triggering means triggering reliably, even on the most infrequent events.

Low and full-speed USB protocol is supported on digital and scope channels of all models.

High-speed USB protocol is supported on scope channels of 1 GHz, 2.5 GHz and 4 GHz models.

For more information: www.agilent.com/find/9000 USB

MIPI D-Phy serial decode and trigger (N8802A or Option 019 on new scope purchases)

This application eliminates the need to manually decode bus traffic. Using data captured on the scope, the application lets you easily view the information sent over MIPI serial buses.

The application also enables software-based protocol triggering.

This application works on all 4 GHz models and can use any combination of the scope channels

For more information: www.agilent.com/find/N8802A

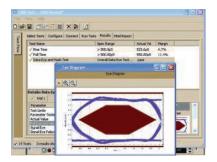
PCI Express[®] serial trigger and protocol viewer (N5463B or Option 006 on new scope purchases)

This application provides protocol-level triggering and viewing of a PCIe[®] lane. Quickly view packets, payload, header, and detail information. Powerful time-correlated views of waveform, symbol, character, link and transaction layer packet data down to the bit level make it easy to isolate communication faults to logic or analog sources.

Trigger on and view CRC, 8B/10B and disparity errors. Hardware-based triggering for PCIe means triggering reliably, even on the most infrequent events.

This application is supported on scope channels of 4 GHz models.

For more information: www.agilent.com/find/9000_PCI

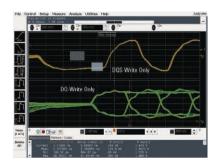

SATA triggering and decode (N8801A or option 038 on new scope purchases)

Trigger on and view both protocol layer information and physical layer signal characteristics for SATA 1 (1.5 GB/s). Numerical decode values are automatically displayed and synchronized below the capture signal or seen in protocol viewer.

This application enables software-based protocol triggering. This application works on 4 GHz and can use any combination of scope channels

For more information: www.agilent.com/find/N8801A

Widest range of debug and compliance software applications: serial physical-layer

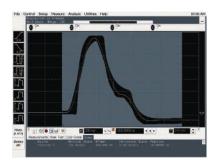

Check for USB compliance.

USB 2.0 compliance testing (N5416A or Option 029 on new scope purchases)

Quickly determine USB compliance with this USB-IF recognized solution. A setup wizard guides you through test selection and configuration.

This application is USB-IF approved and supported on all 2.5 GHz and 4 GHz models.

For more information: www.agilent.com/find/9000 USB-compliance

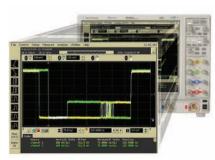

Test DDR memory.

DDR1 and LPDDR/DDR2 and LPDDR2/DDR3 compliance testing (U7233A/N5413B/U7231A or Options 031/032/033 on new scope purchases) or N5459A Opt 001 for all memory applications

Quickly and easily evaluate and characterize your memory designs. Automated testing based on JEDEC specifications saves time. The application also includes additional debug and compliance capabilities.

This application is supported on all models. However, the DDR technology you are using may dictate the minimal bandwidth required for your scope.

For more information: www.agilent.com/find/9000_DDR


Validate Ethernet compliance.

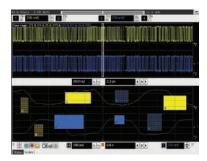
Ethernet and Energy Efficient Ethernet compliance testing (N5392A and N5392B)

Perform a wide range of electrical tests for 10-, 100-, and 1000-Base-T systems. An N5395C test fixture and N5396A jitter test cable speed compliance testing.

These applications are supported on all 600 MHz and higher bandwidth models.

For more information: www.agilent.com/find/9000 ethernet

Check for MIPI compliance.


MIPI compliance testing (U7238A or Option 035 on new scope purchased)

Quickly validate your embedded D-Phy data link for CSI and DSI architectures. This software performs a wide range of tests required for meeting MIPI D-Phy physical layer requirements.

These applications are is supported on analog channels of all 4 GHz models.

For more information: www.agilent.com/find/U7238A

Widest range of debug and compliance software applications: InfiniiScan and jitter analysis

Identify signal integrity issues with InfiniiScan Zone – Qualify triggering.

File Central Setup Monauer Analyze Uktors Help 12:05/4 Image: Setup Monauer Analyze Uktors Help Image: Setup Monauer Analyze Uktors Help

Conduct jitter analysis.

InfiniiScan event identification (N5415B or Option 009 on new scope purchases)

Rapidly trigger on complex events and identify signal integrity issues. This innovative software quickly scans through thousands of acquired waveform cycles and isolates anomalous signal behavior. Up to eight zones across channels are available.

This application is supported on all models.

For more information: www.agilent.com/find/infiniiScan

EZJIT analysis software (E2681A or option 002 on new scope purchases)

Quickly characterize and evaluate most commonly needed jitter measurements, including cyclecycle, N-cycle, period, time-interval, error, setup and hold time, histograms, measurement trending and jitter spectrum.

This application is supported on all models.

For more information: www.agilent.com/find/EZJIT

Analyze jitter plus RJ/DJ separation.

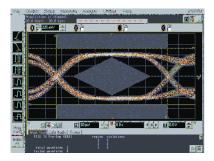
EZJIT Plus analysis software (N5400A or Option 004 on new scope purchases. To upgrade from EZJIT to EZJIT Plus, order N5401A.)

 EZJIT Plus adds additional compliance views and an expanded measurement setup wizard to simplify and automate RJ/DJ separation for testing against industry standards.

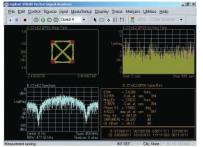
This application is supported on all models.

For more information: www.agilent.com/find/EZJITPlus

EZJIT Complete.


EZJIT Complete analysis software (N8823A or Option 070 on new scope purchases. To upgrade from EZJIT Plus to EZJIT Complete, order N8813A.)

EZJIT Complete includes all of the advanced jitter analysis capabilities of EZJIT and EZJIT Plus, and adds advanced analysis of the vertical noise affecting the ones and zeros of your real-time eye. Decomposition of vertical noise provides key insight into degradation of your eye height. In providing advanced decomposition of both horizontal jitter and vertical noise components of your signals, EZJIT Complete represents the most comprehensive analysis software available.


This application is supported on all models and is standard on DSA models.

For more information: www.agilent.com/find/EZJITComplete

Widest range of debug and compliance software applications: viewing and analysis

Recover embedded clocks with serial data analysis (SDA).

Use vector signal analysis software to see FFT-based spectrum analysis.

High-speed serial data analysis software (N5384A or Option 003 on new scope purchases)

Quickly validate signal integrity for high-speed serial interfaces with embedded clocks. Recover embedded clocks synchronized with the analog waveform view. Build and validate eye diagrams. The SDA package also includes software-based bit-level triggering and decode for 8B/10B.

This application is supported on all models.

For more information: www.agilent.com/find/9000_SDA

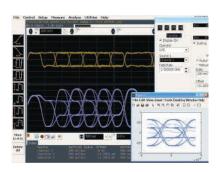
Vector signal analysis software (89601B)

Expand the measurement capability of your scope with the 89601B vector signal analysis software. This advanced DSP-based software takes the digitized signal data from the scope. Then it provides FFT-based spectrum analysis and wide-bandwidth digital modulation analysis for wireless communication signals such as WCDMA and cdma2000 and wireless networking signals such as 802.11 WiFi and 802.16 WiMax.

Take advantage of the super-wide bandwidth of your scope to capture and evaluate radar signals.

For more information: www.agilent.com/find/VSA

Prove your designs conform to industry standards with a communication mask test kit.


Communication mask test kit (E2625A)

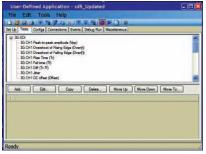
Take the frustration out of communications testing and prove your designs conform to industry standards with the communication mask test kit option.

The kit comes with a set of electrical communication adapters to ensure convenient, reliable, and accurate connections to your device under test. The kit includes more than 20 industry-standard ANSI T1.102, ITU-T G.703, and IEEE 802.3 communication signal mask templates.

This application is supported on all models.

For more information: www.agilent.com/find/9000_comm

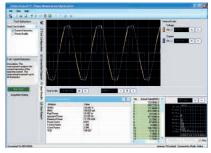
Signal equalization using user-defined function.


User-defined function (N5430A or Option 010 on new scope purchases)

Install MATLAB[®] on your scope and add your favorite MATLAB .m scripts as function operators and use them as standard waveform functions.

This application is supported on all models and requires MATLAB software (not included with UDF)

For more information: www.agilent.com/find/UDF


Infiniium 9000 Series applications and upgrades

Quickly automate oscilloscope measurements.

Rapid FPGA debug.

Use your scope to quickly make and analyze power measurements.

Quickly characterize and correct for any input to your oscilloscope

User-definable application (N5467A or Option 040 on new scope purchases)

Rapidly develop your own automated measurements and tests. This application provides the framework you need to quickly program and automate any single or set of measurements the oscilloscope can make.

The application also provides full control of other Agilent instruments and HTML reporting capabilities.

For more information: www.agilent.com/find/9000 UDA

FPGA dynamic probe application (N5397A or Option 016 on new scope purchases)

Agilent's MSO FPGA dynamic probe provides internal FPGA visibility and quick instrument setup using an innovative core-assisted debug approach. Measurement tasks that previously took hours can be done in seconds with a few mouse clicks.

This application is supported on all MSO models.

For more information: www.agilent.com/find/9000_xilinx

Power application (U1882A or Option 015 on new scope purchases)

Agilent's power application provides a full suite of power measurements. Make more accurate power-supply efficiency measurements by using an U1880A de-skew fixture to de-skew your voltage and current probes.

This application is supported on all models.

For more information: www.agilent.com/find/9000_power-app

PrecisionProbe software (N2808A)

Make more accurate measurements independent of what probes or cables used. Agilent's N2808A PrecisionProbe software characterizes and corrects for the loss in your specific cable or probe. PrecisionProbe removes the uncertainty about the input connected to your oscilloscope by allowing you to see its characteristics in less than five minute. PrecisionProbe gives you design and debug confidence by allowing you to quickly de-embed probe and cable loss to make more accurate measurements.

For more information: www.agilent.com/find/PrecisionProbe

InfiniiView Oscilloscope Analysis Software (N8900A)

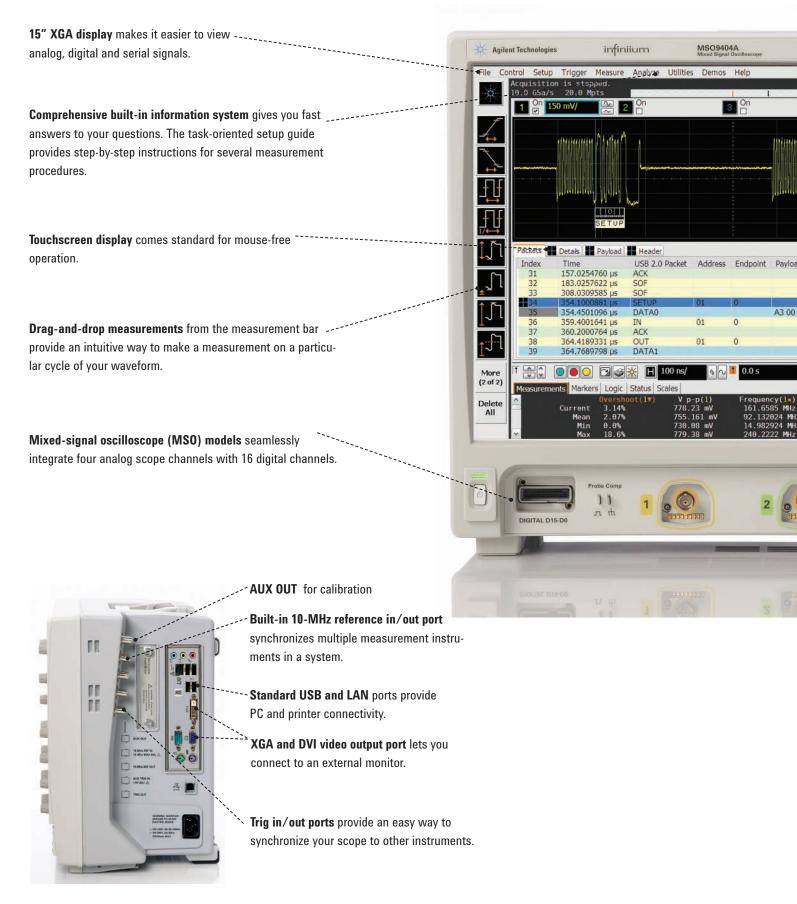
Wish you could do additional signal viewing, analysis and documentation tasks away from your scope and target system? With Agilent's InfiniiView oscilloscope analysis software you can. Capture waveforms on your scope, save to a file, and open the data record into Agilent's InfiniiView application. View, analyze, share, and document scope measurements anywhere your PC goes.

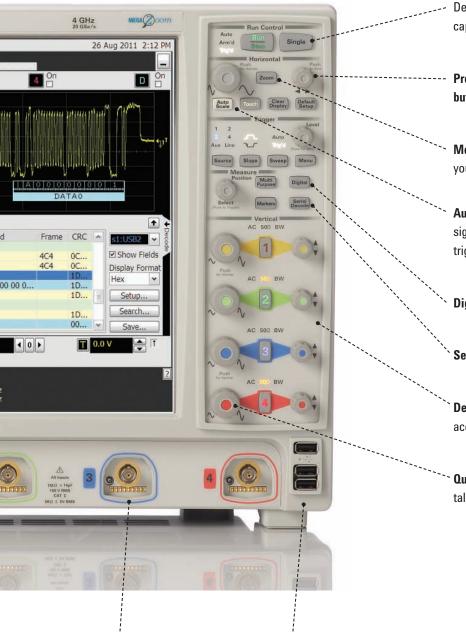
Agilent Infiniium portfolio

Agilent's real-time Infiniium lineup includes 9000, 9000 H-, 90000A and 90000 X Series oscilloscopes. These share a number of advanced hardware and software technology blocks. Use the following selection guide to determine which best matches your specific needs.

Widest range of applications. Biggest display plus thin depth

See your signals in HD


Low noise, high bandwidth


Fastest real-time oscilloscope

	9000 Series	9000 H-Series	90000 Series	90000 X-Series	90000 Q-Series
Bandwidth	Up to 4 GHz	Up to 2 GHz	Up to 13 GHz	Up to 33 GHz	Up to 63 GHz
50 Ω & 1 MΩ inputs	•	•	$1\ M\ \Omega$ with adapter	$1\ M\ \Omega$ with adapter	$1\ M\ \Omega$ with adapter
MSO models	•	•		•	
Max 2-channel (4-channel) sample rate	20 GSa/s (10 GSa/s)	10 GSa/s (10 GSa/s)	40 GSa/s (40 GSa/s)	80 GSa/s (40 GSa/s)	160 GSa/s (80 GSa/s)
GPIB	N4865A GPIB to LAN adapter	N4865A GPIB to LAN adapter	Built in option	Built in option	Built in option
Rackmount height	8U	8U	70	70	8U
Display size	15″	15″	12″	12″	15″

Agilent Infiniium 9000 Series oscilloscopes

- Dedicated **single acquisition button** provides better control to capture a unique event.
- **Pressing horizontal delay knob** sets the delay to zero. A **zoom button** provides quick access to two screen-zoom modes.
- **MegaZoom instant response and optimum resolution** allows you to pan and zoom quickly.
- **Autoscale** lets you rapidly display any analog or digital active signals, automatically setting the vertical, horizontal and trigger controls for the best display, while optimizing memory.
- Digital channel button provides quick setup access.
- Serial decode button enables quick setup access.
- **Dedicated per-channel front panel controls** make it easy to access the vertical and horizontal scaling and offset.
- **Quick access to fine/vernier control** by pressing the horizontal and vertical sensitivity knobs.

AutoProbe interface automatically configures the attenuation ratio of the probe and provides probe power for Agilent's active probes. **Built-in USB ports** makes it easy to save your work and update your system software quickly.

Accessory pouch detaches easily.

Connectivity and probing

Connectivity

Industry compatibility

Export screen shots and waveforms in numerous industry-standard formats. In addition, the 9000 Series supports compatibility with the following

- MATLAB Basic and Advanced (add as 061 and 062 on new scope orders)
- IVI COM driver for application development environments such as Visual Studio, Agilent VEE, NI LabView and MATLAB instrument control toolbox.

www.agilent.com/find/adn

- IntuiLink tool bars and data capture. www.agilent.com/find/intuilink
- LXI Class C including built-in Web control
- NI LabView PnP and IVI drives www.agilent.com/find/ni9404

Probing

Each Infiniium 9000 Series oscilloscope ships with four N2873A 10:1 divider passive probes and probe accessory pouch.

With both 50 Ω and 1 M Ω inputs, Infiniium 9000 Series scopes support a wide range of probes, including Agilent's InfiniiMax and InfiniiMode Series probes.

Agilent offers an innovative family of probes that are engineered for signal access and measurement accuracy. Whether you're looking for simple passive probes, the high bandwidth and low loading of an active probe, or specialty probes for current or high voltage, we can meet your needs. Our innovative accessories allow reliable connection to challenging components like small pitch devices, surface mount ICs, and DDR BGA packages – even hands free! To see our entire award-winning portfolio of passive, singleended active, differential active, and current probes for Infiniium oscilloscopes, please view the Infiniium Oscilloscope Probes and Accessories Selection Guide. publication number 5968-7141EN.

Recommended optional active probes

DSO/MS09404A	1132A InfiniiMax 5 GHz probe
	N2752A InfiniiMode 6 GHz probe
DSO/MS09254A	1131A InfiniiMax 3.5 GHz probe
	N2751A InfiniiMode 3.5 GHz probe
DSO/MS09104A	N2796A 2 GHz single-ended probe
	1130A InfiniiMax 1.5 GHz probe
	N2750A InfiniiMode 1.5 GHz probe
DSO/MS09064A	N2795A 1 GHz single-ended probe
	N2750A InfiniiMode 1.5 GHz probe

9064A	9104A	9254A	9404A
600 MHz 500 MHz	1.0 GHz 500 MHz	2.5 GHz 500 MHz	4 GHz 500 MHz
540 ps	253 ps	142 ps	85 ps
360 ps	174 ps	98 ps	59 ps
	•		
50 Ω ± 2.5%, 2	I MΩ ± 1% (11pF t	/pical)	
1 MΩ: AC (3.5 50 Ω:DC	Hz), DC		
20 MHz on 1 I	VIΩ input ; 500 MH	z up to full scope bar	ndwidth in increments of 500 MHz
8 bits, ≥12 bit	s with averaging		
>50 MHz to 2	5 GHz: 40 dB		
± 2% of full so	cale at full resolution	on on channel scale :	± 5 °C from cal temp
		coupling	
1 mV to <10 n 10 mV to <20 20 mV to <100 100 mV to <1	Available offset ± 2 V ± 5 V ± 10 V ± 20 V ± 100 V ± 100 V ± 12 div or ±4V, whichever is smallest		
	600 MHz 500 MHz 540 ps 360 ps DS09000 - 4 MS09000 - 4 50 Ω ± 2.5%, 1 1 MΩ: 1 mV/c 50 Ω ± 2.5%, 1 1 MΩ: 1 mV/c 50 Ω ± 2.5%, 1 1 MΩ: 1 mV/c 50 Ω ± 2.5%, 1 1 MΩ: AC (3.5 50 Ω: 1 mV/di 1 MΩ: AC (3.5 50 Ω: 1 mV/di 20 MHz on 1 N 8 bits, ≥12 bits DC to 50 MHz 20 MHz on 1 N 8 bits, ≥12 bits DC to 50 MHz 250 MHz to 2. >2.5 GHz to 4 ± 2% of full so 1 MΩ: 150V R ± 250 50 Ω: 5 Vrms Vertical sensiti 1 mV to <10 n	600 MHz 1.0 GHz 500 MHz 500 MHz 540 ps 253 ps 360 ps 174 ps DS09000 - 4 analog MS09000 - 4 analog + 16 digital 50 Ω ± 2.5%, 1 MΩ ± 1% (11pF ty) 1 MΩ: 1 mV/div to 5 V/div 50 Ω: 1 mV/div to 1 V/div 1 MΩ: AC (3.5 Hz), DC 50 Ω:DC 20 MHz on 1 MΩ input ; 500 MHz 8 bits, ≥12 bits with averaging DC to 50 MHz: 50 dB >50 MHz to 2.5 GHz: 40 dB >2.5 GHz to 4 GHz: 25 dB ± 2% of full scale at full resolutio 1 MΩ: 150V RMS or DC, CAT I ± 250 V (DC + AC) in AC	600 MHz 1.0 GHz 2.5 GHz 500 MHz 500 MHz 500 MHz 540 ps 253 ps 142 ps 360 ps 174 ps 98 ps DS09000 – 4 analog MS09000 – 4 analog + 16 digital 98 ps $50 \Omega \pm 2.5\%, 1 M\Omega \pm 1\% (11pF typical)$ 1 MΩ: 1 mV/div to 5 V/div 50 Ω: 1 mV/div to 1 V/div 1 MΩ: 1 mV/div to 5 V/div 50 Ω: 1 mV/div to 1 V/div 1 MΩ: AC (3.5 Hz), DC 50 Ω:DC 20 MHz on 1 MΩ input ; 500 MHz up to full scope bar 8 bits, ≥12 bits with averaging DC to 50 MHz: 50 dB >50 MHz to 2.5 GHz: 40 dB >2.5 GHz to 4 GHz: 25 dB ± 2% of full scale at full resolution on channel scale : 1 MΩ: 150V RMS or DC, CAT I ± 250 V (DC + AC) in AC coupling 50 Ω: 5 Vrms Vertical sensitivity 1 mV to <10 mV/div 10 mV to <20 mV/div 20 mV to <100 mV/div 100 mV to <10 mV/div

1 Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ±5 °C from firmware calibration temperature. Input impedance is valid when V/div scaling is adjusted to show all waveform vertical values within scope display.

2 Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale.

3 50Ω input: Full scale is defined as 8 vertical divisions. Magnification is used below 10mV/div, full-scale is defined as 80 mV. The major scale settings are 5mV, 10mV, 20mV, 50 mV, 100mV, 200 mV, 500 mV, 100mV, 200 mV, 500 mV, 100mV, 500 mV, 100mV, 500 mV, 100mV, 500 mV, 500

1MΩ input: Full scale is defined as 8 vertical divisions. Magnification is used below 5mV/div, full-scale is defined as 40 mV. The major scale settings are 5mV, 10mV, 20mV, 50 mV, 100 mV, 200 mV, 500 mV, 10.2V, 5V.

Vertical: scope channels (con't)

Offset accuracy ^{1,3}	± (1.25% of ch	\pm (1.25% of channel offset +1% of full scale + 1 mV)				
Dynamic range		from center screen rom center screen				
DC voltage measurement accuracy ²						
	Dual cursor Single cursor	± [(DC gain accuracy)+(resolution)] ± [(DC gain accuracy)+(offset accuracy)+(resolution/2)]				

RMS Noise Floor (V RMS AC)

	9	9064A	91	04A	92	54A	94	04A
Volts/div	full BW	500 MHz filter	full BW	1 GHz filter	full BW	2 GHz filter	full BW	4 GHz filter
10 mV	213 uV	138 uV	240 uV	120 uV	273 uV	210 uV	402 uV	263 uV
20 mV	470 uV	175 uV	481 uV	154 uV	445 uV	330 uV	627 uV	424 uV
50 mV	1.15 mV	.464 mV	1.24 mV	.415 mV	1.22 mV	.780 mV	1.67 mV	1.12 mV
100 mV	2.37 mV	.895 mV	2.43 mV	.786 mV	2.54 mV	1.50 mV	3.17 mV	2.16 mV
200 mV	4.65 mV	1.75 mV	4,85 mV	1.50 mV	5.06 mV	2.86 mV	6.18 mV	4.15 mV
500 mV	11.8 mV	4.60 mV	12.3 mV	4.15 mV	12.2 mV	7.61 mV	15.8 mV	11.26 mV
1 V	23.9 mV	8.91 mV	24.3 mV	7.85 mV	25.2 mV	14.9 mV	31.5 mV	21.9 mV

Vertical: digital channels	On all MSO Models
Input channels	16 digital channels
Threshold groupings	16 digital channels Pod 2: D15 – D8
Threshold selections	TTL (1.4V), CMOS, (5.0V, 3.3V, 2.5V), ECL (-1.3V), PECL (3.7V), user defined (±8.00 V in 100 mV increments)
Maximum input voltage	±40 V peak CAT I
Threshold accuracy	±(100 mV + 3% of threshold setting)
Input dynamic range	±10 V about threshold
Minimum input voltage swing	500 mV peak-to-peak
Input impedance (flying leads)	100 k Ω ± 2% (~ 8 pF) at probe tip
Resolution	1 bit
Analog bandwidth	400 MHz

1 Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ± 5 °C from firmware calibration temperature. 2 Vertical resolution for 8 bits = 0.4% of full scale, for 12 bits = 0.024% of full scale.

3 50Ω input: Full scale is defined as 8 vertical divisions. Magnification is used below 10mV/div, full-scale is defined as 80 mV. The major scale settings are 5mV, 10mV, 20mV, 50 mV, 100 mV, 200 mV, 500 mV, 1V.

1MΩ input: Full scale is defined as 8 vertical divisions. Magnification is used below 5mV/div, full-scale is defined as 40 mV. The major scale settings are 5mV, 10mV, 20mV, 50 mV, 100 mV, 200 mV, 50 0mV, 1V,2V, 5V.

Horizontal

Channel-to-channel skew (digital)	2 ns typical	
Glitch detect (digital)	≥ 2.0 ns	
Main time base range	5 ps/div to 20 s/div	
Horizontal position range	0 to ± 200 s	
Delayed sweep range	1 ps/div to current main time base setting	
Resolution	1 ps	
Modes	Main, delayed, roll (200 ms to 20 sec)	
Reference positions	Left, center, right	
Channel deskew	-1 ms to +1 ms range	
Time scale accuracy (internal reference) (External reference clock = off)	Horizontal time base setting \pm ((Horizontal time base setting) *(0.4 + 0.5* years since calibration)) ppm	

Delta-time measurement accuracy^{2,3,4,5}

Delta-time measurement accuracy ^{2,3,4,3}		x= y=
		9064 4.8 20
	$\sqrt{\left(\frac{x*Noise}{SlewRate}\right)^2 + y*10^{-24} + \frac{TimeScaleAccy*Reading}{2}}$ sec pk	9104 4.8 15
	$\sqrt{\left(\frac{x + Noise}{Slew(Bate}\right)^2 + y + 10^{-24} + \frac{1111eScaleAccy + heading}{2}}$ sec pk	9254 4.0 15
Absolute averaging disabled		9404 5.0 20
		<u> </u>
		9064 .33 .1
	Time Scale Acov + Reading	9104 .33 .05
	$\sqrt{\left(\frac{x * Noise}{SlewBate}\right)^2 + y * 10^{-24} + \frac{TimeScaleAccy \cdot Reading}{2}}$ sec pk	9254 .33 .10
Absolute >256 averages	V SlewHate J 2	9404 .35 .15
		y=
		9064 .75
	$\sqrt{\left(\frac{1.4 * Noise}{S/ewBata}\right)^2}$ + y * 10 ⁻²⁴ sec _{rms}	9104 .65
	$V(\overline{SlewRate}) + y + 10$ Sec ms	9254 .75
Standard deviation averaging disabled		9404 .80
Standard deviation >256 averages	$\sqrt{\left(\frac{0.1 * Noise}{SlewRate}\right)^2 + 0.01 * 10^{-24}}$ sec _{rms}	
Jitter measurements floor ^{2,3}		$\frac{X = Y =}{1 + 1 + 2}$
Sitter measurements noor		9064 1.0 1.0
Time interval error ⁴	$\sqrt{\left(\frac{\chi * Noise}{SlewRate}\right)^2 + \chi * 10^{-24} + \sec_{rms}}$	9104 1.0 0.5
	V \ SlewRate	9254 .95 1.1 9404 .95 1.2
		9404 .90 1.2
		$\frac{y=}{9064 .75}$
	11.4 Noise 2	9064 .75 9104 .65
Period jitter	$\sqrt{\left(\frac{1.4*Noise}{SlewBate}\right)^2}$ + y * 10 ⁻²⁴ sec _{rms}	9104 .65 9254 .75
, ,	V Slewhate J	9254 .75 9404 .80
		9404 .00
		<u>y=</u>
		9064 1.8
N-cycle, cycle-cycle jitter	$\sqrt{\left(\frac{2.4*Noise}{SlewBate}\right)^2}$ + Y *10 ⁻²⁴ sec _{rms}	9104 1.4
IN CYCIC, CYCIC-CYCIC JILLEI	V \ SlewRate	9254 1.9 9404 2.0
		9404 2.0

1 Denotes warranted specifications, all others are typical. Specifications are valid after a 30-minute warm-up period and ±5 °C from firmware calibration temperature.

4 Time ranges ≤ 10 μs.

5 Values represent time error between two edges on a single channel. Standard deviation value refers to the standard deviation of 256 consecutive measurements performed using an individual instrument. Reading is the displayed DTMA measurement value.

² Noise is the displayed noise floor. SlewRate is the displayed slew rate of the signal at the threshold crossings. Sample rate = $\max_x \sin(x)/x$ interpolation enabled. 3 Measurement threshold = fixed voltage at 50% level.

Maximum real-time sample rate Memory depth per channel Standard Option 50M Option 100 Option 200 Option 500		4 ch x 5 GSa/s or 2 ch x 10 GSa/s		
Standard Option 50M Option 100 Option 200				
Option 500	20 Mpts on 4 channels, 40 Mpts on 2 channels 50 Mpts on 4 channels, 100 Mpts on 2 channels 100 Mpts on 4 channels, 200 Mpts on 2 channels 200 Mpts on 4 channels, 400 Mpts on 2 channels 500 Mpts/ 250 Mpts on 4 channels, 1 Gpts/ 500 Mpts on 2 channels (single/repetitive mode)			
Maximum time between triggers	sec.) resolution yields a maximum effecti esolution between segments) s standard memory, up to 131,072 seg is 562,950 seconds (6.5 days)	ve sample rate of 1,000 GSa/s)		
Filters	Sin (x) / x Interpolation			
Acquisition: digital channels				
Maximum real time sample rate	2 GSa/s			
Maximum memory depth per channel	128/ 64 Mpts with 2 GSa/s. 64/32 Mpts with sampling < 2 GSa/s (single/repetitive mode).			
Minimum width glitch detection	2 ns			
Trigger: scope channels				
Trigger sources	Channel 1, channel 2, channel 3, c	hannel 4, aux, and line		
Sensitivity	1 M Ω input, edge trigger, 50 Ω	DC to 500 MHz: 0.6 div DC to 2 GHz, 0.5 div 2 GHz to 4 GHz: 1.0 div		
	Auxiliary	DC to 700 MHz: 300 mVp-p		
Trigger level range Channel 1,2,3,4 Auxiliary	± 4 div from center screen (50 Ω) ± 8 div from center screen with max of ± 8 V (1 MΩ) ± 5 V (50Ω up to 500 MHz with at least 500 mV signal swing)			
Sweep modes	Auto, triggered, single			
Display jitter (displayed trigger jitter) ^{1.2} $\sqrt{\left(\frac{1.0 * Noise}{SlewRate}\right)^2 + y * 10^{-24} sec}_{rms} \qquad \qquad$		9064 .50 9104 .35 9254 .50		
Trigger holdoff range	100 ns to 10 s fixed and random			
Trigger actions	Specify an action to occur, and the frequency of the action, when a trigger condition occurs. Actions include: e-mail on trigger and execute "multipurpose" user settings			
Trigger coupling 1 MΩ: DC, AC, (10 Hz)	low frequency reject (50 kHZ high n	ass filter), high frequency reject (50 kHz low pass filter)		

1. Internal edge trigger mode. Trigger threshold = fixed voltage at 50% level. The slew rate independent value in the formula represents the traditional trigger jitter.

Display jitter example. At 100 mV/div typical noise values are 3.2 mV RMS for 9404 models, 2.5 mV RMS for 9254A models, and 2.4 mV RMS for 9104A models. For slew rate of 500 mVpp sin wave with frequency equal to max analog bandwidth of each model, typical display jitter is .95 ps RMS for 9404A models, .97ps for 9254A models, and 1.7 ps RMS for 9104A models.

Threshold range (user defined)	±8.0 V in 100-mV increments		
Threshold accuracy	±(100 mV + 3% of threshold setting)		
Measurements and math			
Waveform measurements	(can be made on either min or zoom window with up to 10 simultaneous measurements with statistics)		
Voltage (scope channels)	Peak-to-peak, minimum, maximum, average, RMS, amplitude, base, top, overshoot, V overshoot, preshoot, V preshoot, upper, middle, lower, crossing point voltage , pulse top, pulse base, pulse amplitude		
Time (digital channels)	Period, frequency, positive width, negative width, duty cycle, delta time		
Time (scope channels)	Rise time, fall time, period, frequency, positive width, negative width, duty cycle, Tmin, Tmax, Tvolt, channel-to-channel delta time, channel-to-channel phase , count pulses , burst width, burst period, burst interval, setup time, hold time		
Mixed (scope channels only)	Area, slew rate		
Frequency domain	FFT frequency, FFT magnitude, FFT delta frequency, FFT delta magnitude		
Level qualification	Any channels that are not involved in a measurement can be used to level-qualify all timing measurements		
Eye-diagram measurements	Eye height, eye width, eye jitter, crossing percentage, Q factor, and duty-cycle distortion		
Measurement modes			
Statistics	Displays the mean, standard deviation, minimum, maximum range, and number of measurement value for the displayed automatic measurements		
Histograms (scope channels)			
Source	Waveform or measurement (histogram on measurement requires EZJIT, EZJIT+, or EZJIT Complete option)		
Orientation	Vertical (for timing and jitter measurements) or horizontal (noise and amplitude change) modes, regions are defined using waveform markers		
Measurements	Mean, standard deviation, mean ± 1, 2, and 3 sigma, median, mode, peak-to-peak, min, max, total hits, peak (area of most hits), X scale hits, and X offset hits		
Marker modes	Manual markers, track waveform data, track measurements		
Waveform math			
Number of functions	16		
Operators	Absolute value, add, AM demodulation, average, horizontal gating, Butterworth ² , common mode, dif ferentiate, divide, FFT magnitude, FFT phase, FIR ¹¹ , high pass filter, integrate, invert, LFE ² , low pass filter (4th-order Bessel Thompson filter), magnify, max, min, multiply, RT Eye ² , smoothing, SqrtSumOfSquare ² , square, square root, subtract, versus Chartstate (MSO models), charttiming (MSO models)		
Automatic measurements	Measure menu access to all measurements, ten measurements can be displayed simultaneously		
Multipurpose	Front-panel button activates up to ten pre-selected or ten user-defined automatic measurements		
Drag-and-drop	Measurement toolbar with common measurement icons that can be dragged and dropped onto the		
measurement toolbar	displayed waveforms		
FFT			
Frequency range	DC to 10 GHz (at 20 GSa/s) or 5 GHz (at 10 GSa/s)		
Frequency resolution Resolution = sample rate/memory depth			
Window modes	Hanning, flattop, rectangular , Blackman Harris, Force		

Trigger: digital channels MSO Models

2 Requires MATLAB software.

Trigger modes

Edge (analog and digital)	Triggers on a specified slope (rising, falling or alternating between rising and falling) and voltage level on any channel.		
Edge transition (analog)	Trigger on rising or falling edges that cross two voltage levels in > or < the amount of time specified Edge transition setting from 250 ps.		
Edge then edge (time) (analog and digital)	The trigger is qualified by an edge. After a specified time delay between 10 ns to 10 s, a rising or falling edge on any one selected input will generate the trigger.		
Edge then edge (event) (analog and digital)	The trigger is qualified by an edge. After a specified delay between 1 to 16,000,000 rising or falling edges, another rising or falling edge on any one selected input will generate the trigger.		
Glitch (analog and digital)	Triggers on glitches narrower than the other pulses in your waveform by specifying a width less thar your narrowest pulse and a polarity. Glitch range settings equal pulse width settings		
Line	Triggers on the line voltage powering the oscilloscope.		
Pulse width (analog and digital) 4 GHz model	Trigger on a pulse that is wider or narrower than specified. Minimum detectable pulse width: 125 ps for analog channels, 1 ns for digital channels. Pulse width range settings: 250 ps to 10 s for analog channels, 2 ns to 10 s for digital channels.		
2.5 GHz model	Minimum detectable pulse width: 200 ps for analog channels, 1 ns for digital channels. Pulse width range settings: 350 ps to 10 s for analog channels, 2 ns to 10 s for digital channels.		
1 GHz and 600 MHz model	Minimum detectable pulse width: 500 ps for analog channels, 1 ns for digital channels. Pulse v range settings: 700 ps to 10 s for analog channels, 2 ns to 10 s for digital channels.		
Runt (analog)	Triggers on a pulse that crosses one threshold but fails to cross a second threshold before cross the first again. Runt settings equal pulse width settings.		
Timeout (analog and digital)	Trigger when a channel stays high, low, or unchanged for too long. Timeout settings equal pulse width settings.		
Pattern/pulse range (analog and digital)	Triggers when a specified logical combination of the channels is entered, exited, present for a specified period of time or is within a specified time range or times out. Each channel can have value of High (H), Low (L) or Don't care (X).		
State (analog and digital) Pattern trigger clocked by the rising, falling or alternating between rising and falling			
Setup/hold (analog)	Triggers on setup, hold, or setup and hold violations in your circuit. Requires a clock and data s on any two inputs (except aux or line) channels as trigger sources. Setup and/or hold time must then be specified.		
Window (analog)	Trigger on entering, exiting, or inside specified voltage range		
Video (analog)	NTSC, PAL-M(525/60), PAL, SECAM(625,50) EDTV(480p/60), EDTV(576/50), HDTV(720p/60), HDTV(720p/50) HDTV(1080i/60)		
Serial (analog and digital)	Requires specified serial software option, I²C, SPI, CAN, LIN,FlexRay, RS-232/UART, JTAG, USB, PCIe, MIPI D-Phy, generic 8B/10B		
Zone-qualified	Requires InfiniiScan software option. SW-based triggering across up to 8 user-drawn zones. For eac zone, user specifies "must intersect" or "must not intersect." Zones can be drawn on multiple channels and combined using Boolean expressions.		

Display

Display	15 inch color XGA TFT-LCD with touch screen		
Display intensity grayscale	64-level intensity-graded display		
Resolution 1024 pixels horizontally x 768 pixels vertically			
Annotation	Up to 12 labels, with up to 100 characters each, can be inserted into the waveform area		
Grids	Can display 1, 2 or 4 waveform grids		
Waveform styles	Connected dots, dots, variable persistence, infinite persistence, color graded infinite persistence. Includes up to 64 levels of intensity-graded waveforms.		
Waveform update rate	Segmented mode: Maximum up to 250,000 waveforms/sec		
(10 GS/s, 50 ns/div, sin(x)/x: on)	Real time mode Maximum of 4,000 waveforms/sec.		
	Typical of 2,100 waveforms/sec with 1kpts memory.		
	Typical of 420 waveforms/sec with 100 kpts memory		
	Typical of 400 waveforms/sec with 1 Mpts memory		
	Typical of 300 waveforms/sec with 10 Mpts		

Computer system and peripherals, I/O ports

Computer system and peripherals			
Operating system	Windows 7 Embedded Standard Intel® Core 2 Duo, M890, 3.0 GHz microprocessor		
CPU			
PC system memory	4 GB		
Drives	\geq 250-Gb internal hard drive (optional removable hard drive), external DVD-RW drive (optional)		
Peripherals Optical USB mouse and compact keyboard supplied. All Infiniium models support compatible input device with a PS/2 or USB interface.			
File types			
Waveforms	Compressed internal format (*.wfm), comma separated values (*.csv), .hdf5, .bin, tab separated values (*.tsv), ability to save .osc (composite including both setup and waveform.		
	and Y value files (*.txt)		
Images	BMP, TIFF, GIF, PNG or JPEG		
I/O ports			
LAN	RJ-45 connector, supports 10Base-T, 100Base-T, and 1000Base-T. Enables Web-enabled remot control, e-mail on trigger, data/file transfers and network printing.		
RS-232 (serial) 9-pin, COM1, printer and pointing device support			
PS/2 Two ports. Supports PS/2 pointing and input devices.			
USB 2.0 Hi-Speed Three 2.0 high-speed ports on front panel plus four ports on side panel. Allow peripherals like storage devices and pointing devices while the oscilloscope on side for instrument control			
Video output 15 pin XGA on side of scope, full output of scope display or dual monitor video outp			
Auxiliary output	DC (\pm 2.4 V); square wave ~755 Hz with ~200 ps rise time.		
Time base reference output	10 MHz, Amplitude into 50 ohms: 800 mV pp to 1.26 V pp (4 dBm \pm 2 dB) if derived from interna reference. Tracks external reference input amplitude \pm 1 dB if applied and selected.		
Time base reference input	Must be 10 MHz, input Z = 50 ohms. Minimum 500 mV pp (–2 dBm), maximum 2.0 V pp (+10 dBr		
LXI compliance	LXI Class C		

General characteristics

Temperature	
Operating 5 °C to + 40 °C	
Non-operating	-40 °C to + 65 °C
Humidity	
Operating	Up to 95% relative humidity (non-condensing) at +40 °C
Non-operating	Up to 90% relative humidity at +65 °C
Altitude	
Operating	Up to 4,000 meters (12,000 feet)
Non-operating Up to 15,300 meters (50,000 feet)	
Vibration	
Operating Random vibration 5-500 Hz, 10 minutes per axis, 0.3 g (rms)	
Non-operating	Random vibration 5-500 Hz, 10 minutes per axis, 2.41 g (rms); resonant search 5-500 Hz, swept sine, 1 octave/minute sweep rate, (0.75 g), 5 minute resonant dwell at 4 resonances per axis
Power	100-120 V, ± 10% 50/60/400 Hz
	100-240 V, ± 10% 50/60 Hz
	Max power dissipated: 375 W
Typical operator noise	30 dB at front of instrument
Weight Net: 11.8 kg (26 lbs.) Shipping: 17.8 kg (39 lbs.)	
Dimensions (with feet retracted)	Height: 12.9 in (33 cm); width: 16.8 in (43 cm); depth: 9 in (23 cm)
Safety	Meets IEC1010-1 Second Edition, certified to UL61010-1 and CAN/CSA-C22.2 No 61010-1 Second Edition (IEC61010-1:2001, MOD).

Infiniium 9000 Series ordering information

How to configure an Infiniium 9000 Series

- 1. Choose needed bandwidth
- 2. Choose MSO or DSO
- 3. Choose desired software applications
- 4. Choose memory depth upgrade
- 5. Choose any additional probes and accessories

Accessories included:

All models ship standard with: 1-year warranty, four N2873A 500 MHz passive probes, probe accessory pouch (mounts on rear of instrument), Agilent I/O libraries suite 15.0, localized power cord, front panel cover, keyboard, mouse, and stylus. User guide and programmer's guide ship on oscilloscope hard drive. Service guide available on Agilent.com. MSO models additionally ship with channel flying lead set logic probe, MSO cable and calibration fixture.

Model	Analog bandwidth	Analog sample rate* (4 ch / 2 ch)	Standard memory* (4 ch / 2 ch)	Scope channels	Logic channels
DS09064A	600 MHz	5 GSa/s / 10 GSa/s	20 Mpts / 40 Mpts	4	-
MS09064A	600 MHz	5 GSa/s / 10 GSa/s	20 Mpts / 40 Mpts	4	16
DS09104A	1 GHz	10 GSa/s / 20 GSa/s	20 Mpts / 40 Mpts	4	-
MS09104A	1 GHz	10 GSa/s / 20 GSa/s	20 Mpts / 40 Mpts	4	16
DS09254A	2.5 GHz	10 GSa/s / 20 GSa/s	20 Mpts / 40 Mpts	4	-
MS09254A	2.5 GHz	10 GSa/s / 20 GSa/s	20 Mpts / 40 Mpts	4	16
DS09404A	4 GHz	10 GSa/s / 20 GSa/s	20 Mpts / 40 Mpts	4	-
MS09404A	4 GHz	10 GSa/s / 20 GSa/s	20 Mpts / 40 Mpts	4	16

* In 2-channel mode, maximum sample rate and memory depth double.

Additional options and accessories				
Option A6J	ANSI Z540 compliant calibration			
DS09000A-820	External DVD-RW with USB connection			
N2902A or Option 1CM (8U)	9000 Series oscilloscope rackmount kit			
Option 801	Removable solid state drive			
N2746A (requires Option 801)	Additional solid state drive Windows 7 embedded standard			
Gemstar 5000 custom-molded case	Available from www.gemstarmfg.com			
N2918B	Infiniium 9000 Series Evaluation Kit			
N4865A	GPIB to LAN adapter			

Quickly remove your solid state drive for additional security with Option 801.

Mount your 9000 Series scope in an 8U high, 19" (487mm) wide rack with option ICM.

Infiniium 9000 Series ordering information

SW Applications	Factory-installed option for new scope purchases	User-installed stand-alone product number	User-installed floating license (N5435A option)
RS-232/UART triggering and decode	001	N5462B	031
EZJIT jitter analysis software	002	E2681A	002
High-speed SDA and clock recovery	003	N5384A	003
EZJIT Plus jitter analysis software	004	N5400A	001
USB triggering and decode	005	N5464B	034
PCI Express 1.1 triggering and decode	006	N5463B	032
I ² C/SPI triggering and decode	007	N5391B	006
CAN, LIN, and FlexRay triggering and decode	008	N8803B	033
InfiniiScan	009	N5415B	004
User-defined function	010	N5430A	005
InfiniiSim signal equalization	012	N5461A	025
InfiniiSim basic signal de-embedding	013	N5465A 001	026
InfiniiSim advanced signal de-embedding	014	N5465A 002	027
Power measurement application software	015	U1882A	
Xilinx FPGA dynamic probe	016	N5397A	
Altera FPGA dynamic probe	017	N5433A	
RS-232, SPI and I ² C triggering and decode bundle	018	N8800B	
MIPI D-Phy Triggering and decode	019	N8802A	036
Ethernet compliance	021	N5392A	008
USB2.0 compliance	029	N5416A	017
DDR1 and LPDDR compliance	031	U7233A	021
DDR2 and LPDDR2 compliance	032	N5413B	016
DDR3 compliance	033	U7231A	020
MIPI D-Phy compliance	035	U7238A	022
SATA1 (1.5 GB/s triggering and decode)	038	N8801A	035
User definable application	040	N5467A	
JTAG (IEEE 1149.1) triggering and decode	042	N8817A	038
USB HSIC compliance test	043	U7248	042
DigRF protocol decode	045	N8807A	047
SVID protocol triggering and decode	046	N8812A	054
Communication mask test kit		E2625A	
MATLAB basic	061		
MATLAB advanced	062		
HDMI 1.4 (up to 740 Mbp/s)		N5399B	
10GBase-T Ethernet compliance		U7236A	
Precision Probe		N2808A	044
eMMC compliance	064	N6465A	061
BroadR-Reach compliance	065	N6467A	062
EZJIT Complete jitter analysis software	070	N8823A	067
MOST compliance	073	N6466A	068
MIPI RFFE protocol	075		
Energy Efficient Ethernet		N5392B	

Memory upgrade

Memory per scope channel (4-channel/ 2-channel mode)	Factory-installed option for new scope purchases	User-installed option (N2900A)
20 Mpts/40 Mpts	Standard	020
50 Mpts/100 Mpts	50M	050
100 Mpts/200 Mpts	100	100
200 Mpts/400 Mpts	200	200
500 Mpts/1 Gpts	500	500

DSO to MSO upgrades (N2901A/B/C/D)

Upgrade your existing DSO to an MSO model in 5 minutes. The upgrade kit turns on all MSO capability and includes an MSO cable, 16-channel lead set with grabbers, an MSO-enabled sticker, and a digital-analog deskew fixture.

Post-sales upgrades

$DSO \rightarrow MSO$ upgrades		
N2901D	DS09064A to MS09064A Upgrade Kit	
N2901A	DS09104A to MS09104A Upgrade Kit	
N2901B	DS09254A to MS09254A Upgrade Kit	
N2901C	DS09404A to MS09404A Upgrade Kit	

Oscilloscopes bandwidth upgrades (done at service centers)		
N2905A	Upgrade to 2.5 GHz bandwidth	-option 006 600 MHz to 2.5 GHz -option 010 1 GHz to 2.5 GHz
N2904A	Upgrade to 4.0 GHz bandwidth	-option 006 600 MHz to 4 GHz -option 010 1 GHz to 4 GHz -option 025 2.5 GHz to 4 GHz

Additional acquisition memory

(N2900A or options 50, 100, 200, and 500 on new scope purchase)

Increase memory depth to capture longer time periods and maintain faster speeds. Memory depth doubles in 2-channel mode.

Memory depth upgrades		
N2900A	Depth doubles in 2 channel mode.	-option 050 upgrade to 50 Mpts/ch -option 100 upgrade to 100 Mpts/ch -option 200 upgrade to 200 Mpts/ch -option 500 upgrade to 500 Mpts/ch

Operating system upgrades		
N2753A	Windows 7 embedded standard for Infiniium 9000 scope with Windows XP and SN>MY50410100	
N2754A	Window 7 embedded standard and M890 motherboard for Infiniium 9000 scopes with Windows XP and SN <my50410100< td=""></my50410100<>	

7X1

myAgilent

www.agilent.com/find/myagilent

A personalized view into the information most relevant to you.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty

www.agilent.com/find/ThreeYearWarranty

Beyond product specification, changing the ownership experience. Agilent is the only test and measurement company that offers three-year warranty on all instruments, worldwide.

www.Agilent.com/find/AssurancePlans

Agilent Assurance Plans

Five years of protection and no budgetary surprises to ensure your instruments are operating to specifications and you can continually rely on accurate measurements.

www.agilent.com/quality

ISO 9001:2008

Agilent Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Agilent Technologies Oscilloscopes Multiple form factors from 20 MHz to > 90 GHz | Industry leading specs | Powerful applications

PCI Express and PCIe are registered trademarks of PCI-SIG. MATLAB is a U.S. registered trademark of The MathWorks, Inc.

www.agilent.com www.agilent.com/find/9000

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada Brazil Mexico United States	(877) 894 4414 (11) 4197 3600 01800 5064 800 (800) 829 4444
Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100
Europe & Middle E	ast
Belgium	32 (0) 2 404 93 40
Denmark	45 45 80 12 15
Finland	358 (0) 10 855 2100
Franco	0825 010 700*

Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 927 6201

For other unlisted countries: www.agilent.com/find/contactus (BP-10-29-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013 Published in USA, November 6, 2013 5990-3746EN

Agilent Technologies