Agilent
ENA 2, 3 and 4 Port
RF Network Analyzers
E5070B 300 kHz to 3 GHz
E5071B 300 kHz to 8.5 GHz
E5091A Multiport Test Set
E5092A Configurable Multiport Test Set
Data Sheet

Definitions

All specifications apply over a $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ range (unless otherwise stated) and 90 minutes after the instrument has been turned on.

Specification (spec.):

Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Supplemental information is intended to provide information that is helpful for using the instrument but that is not guaranteed by the product warranty. This information is denoted as either typical or nominal.

Typical (typ.):

Expected performance of an average unit that does not include guardbands. It is not guaranteed by the product warranty.

Nominal (nom.):

A general, descriptive term that does not imply a level of performance. It is not guaranteed by the product warranty.

Corrected system performance

The specifications in this section apply for measurements made with the Agilent E5070B/E5071B network analyzer with the following conditions:

- No averaging applied to data
- Environmental temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, with less than $1^{\circ} \mathrm{C}$ deviation from the calibration temperature
- Response and isolation calibration not omitted

Table 1-1

System dynamic range ${ }^{1,2}$

Description	Specification	Supplemental information
System dynamic range		
300 kHz to 3 MHz , IF bandwidth $=3 \mathrm{kHz}$	85 dB	
3 MHz to 1.5 GHz IF bandwidth $=3 \mathrm{kHz}$	95 dB	98 dB
1.5 GHz to 3 GHz , IF bandwidth $=3 \mathrm{kHz}$	97 dB	100 dB
3 GHz to 4 GHz, IF bandwidth $=3 \mathrm{kHz}$	96 dB	99 dB
4 GHz to 6 GHz , IF bandwidth $=3 \mathrm{kHz}$	92 dB	90 dB
6 GHz to 7.5 GHz , IF bandwidth $=3 \mathrm{kHz}$	87 dB	83 dB
7.5 GHz to 8.5 GHz , IF bandwidth $=3 \mathrm{kHz}$	80 dB	110 dB
300 kHz to 3 MHz IF bandwidth $=10 \mathrm{~Hz}$		123 dB
3 MHz to 1.5 GHz , IF bandwidth $=10 \mathrm{~Hz}$	120 dB	125 dB
1.5 GHz to 3 GHz , IF bandwidth $=10 \mathrm{~Hz}$	122 dB	124 dB
3 GHz to 4 GHz , IF bandwidth $=10 \mathrm{kHz}$	121 dB	119 dB
4 GHz to 6 GHz, IF bandwidth $=10 \mathrm{~Hz}$	117 dB	115 dB
6 GHz to 7.5 GHz , IF bandwidth $=10 \mathrm{~Hz}$	112 dB	108 dB
7.5 GHz to 8.5 GHz , IF bandwidth $=10 \mathrm{~Hz}$	105 dB	

[^0]Table 1-2 Corrected system performance with type-N device connectors, 85032F calibration kit
Network analyzer: E5070B/E5071B, calibration kit: 85032F (type-N, 50Ω), calibration: full 2-port
IF bandwidth $=10 \mathrm{~Hz}$, No averaging applied to data, environmental temperature $=23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<1^{\circ} \mathrm{C}$ deviation from calibration temperature, isolation calibration not omitted

Description		Specification (dB)	
	$\mathbf{3 ~ M H z ~ t o ~} \mathbf{3} \mathbf{~ G H z}$	$\mathbf{3 ~ G H z} \mathbf{t o} \mathbf{6} \mathbf{~ G H z}$	$\mathbf{6} \mathbf{~ G H z ~ t o ~} \mathbf{8 . 5} \mathbf{~ G H z}$
Directivity	49	40	38
Source match	41	36	35
Load match	49	40	37
Reflection tracking	± 0.011	± 0.032	± 0.054
Transmission tracking	± 0.016	± 0.062	± 0.088

Transmission uncertainty (specification)

Reflection uncertainty (specification)

Magnitude

Phase

Table 1-3 Corrected system performance with type-N device connectors, 85092C electronic calibration module
Network analyzer: E5070B/E5071B, calibration module: 85092C (type-N, 50Ω) electronic calibration (ECal) module, calibration: full 2-port
IF bandwidth $=10 \mathrm{~Hz}$, no averaging applied to data, environmental temperature $=23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<1^{\circ} \mathrm{C}$ deviation from calibration temperature, isolation calibration not omitted

Description		Specification (dB)	
	$\mathbf{3 ~ M H z}$ to $\mathbf{3} \mathbf{~ G H z}$	$\mathbf{3 ~ G H z} \mathbf{t o} \mathbf{6 ~ G H z}$	$\mathbf{6 ~ G H z ~ t o ~} \mathbf{8 . 5} \mathbf{~ G H z}$
Directivity	52	52	47
Source match	45	41	36
Load match	47	44	39
Reflection tracking	± 0.040	± 0.060	± 0.070
Transmission tracking	± 0.039	± 0.069	± 0.136

Transmission uncertainty (specification)

Reflection uncertainty (specification)

Magnitude

Phase

Table 1-4 Corrected system performance with 3.5 mm device connector type, 85033E calibration kit
Network analyzer: E5070B/E5071B, calibration kit: 85033E ($3.5 \mathrm{~mm}, 50 \Omega$), calibration: full 2-port

IF bandwidth $=10 \mathrm{~Hz}$, no averaging applied to data, environmental temperature $=23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<1^{\circ} \mathrm{C}$ deviation from calibration temperature, isolation calibration not omitted

Description		Specification (dB)	
	$\mathbf{3 ~ M H z ~ t o ~} \mathbf{3 ~ G H z}$	$\mathbf{3 ~ G H z} \mathbf{t o} \mathbf{6 ~ G H z}$	$\mathbf{6 ~ G H z ~ t o ~} \mathbf{8 . 5} \mathbf{~ G H z}$
Directivity	46	38	38
Source match	43	37	36
Load match	46	38	38
Reflection tracking	± 0.006	± 0.009	± 0.010
Transmission tracking	± 0.016	± 0.065	± 0.079

Transmission uncertainty (specification)

Phase

Reflection uncertainty (specification)

Magnitude

Phase

Table 1-5 Corrected system performance with 3.5 mm device connector type, 85093C electronic calibration module
Network analyzer: E5070B/E5071B, calibration module: 85093C ($3.5 \mathrm{~mm}, 50 \Omega$) electronic calibration (ECal) module, calibration: full 2-port

IF bandwidth $=10 \mathrm{~Hz}$, no averaging applied to data, environmental temperature $=23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<1^{\circ} \mathrm{C}$ deviation from calibration temperature, isolation calibration not omitted

Description		Specification (dB)	
	$\mathbf{3 ~ M H z}$ to $\mathbf{3} \mathbf{~ G H z}$	$\mathbf{3 ~ G H z} \mathbf{t o} \mathbf{6 ~ G H z}$	$\mathbf{6} \mathbf{~ G H z ~ t o ~} \mathbf{8 . 5} \mathbf{~ G H z}$
Directivity	52	51	47
Source match	44	39	34
Load match	47	44	40
Reflection tracking	± 0.030	± 0.050	± 0.070
Transmission tracking	± 0.039	± 0.069	± 0.117

Transmission uncertainty (specification)

Reflection uncertainty (specification)

Magnitude

Phase

Uncorrected system performance

Table 1-6
Uncorrected system performance (correction: off, system correction: on)

Description		Specification	
	$\mathbf{3 ~ M H z ~ t o ~} \mathbf{3} \mathbf{~ G H z}$	$\mathbf{3} \mathbf{~ H H z} \mathbf{t o} \mathbf{6 ~ G H z}$	$\mathbf{6 ~ G H z}$ to $\mathbf{8 . 5 \mathbf { G H z }}$
Directivity	25 dB	20 dB	15 dB
Source match	25 dB	20 dB	15 dB
Load match	17 dB	12 dB	10 dB
Transmission tracking	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$
Reflection tracking	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$

Test port output (source)

Table 1-7
Test port output frequency

Description	Specification	Supplemental information
Range		
E5070B	300 kHz to 3 GHz	
E5071B	300 kHz to 8.5 GHz	
Resolution	1 Hz	$\pm 5 \mathrm{ppm}\left(5^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$, typical)
Source stability		$\pm 0.05 \mathrm{ppm} \mathrm{(233}^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, typical)
Option E5070B/E5071B-UNQ	$\pm 0.5 \mathrm{ppm} /$ year (typical)	
Option E5070B/E5071B-1E5		
CW accuracy		
Option E5070B/E5071B-UNO	$\pm 5 \mathrm{ppm}, 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	
Option E5070B/E5071B-1E5	$\pm 1 \mathrm{ppm}, 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	

Test port output (source)

Table 1-8
Test port output power ${ }^{1}$

Description	Specification	Supplemental information
Level accuracy (at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)		
300 kHz to 10 MHz		$\pm 1.0 \mathrm{~dB}$ (at 0 dBm , relative to 50 MHz reference)
10 MHz to 8.5 GHz	$\pm 0.650 \mathrm{~dB}$ (at $0 \mathrm{dBm}, 50 \mathrm{MHz}$ absolute, source attenuator 0 dB) $\pm 1.0 \mathrm{~dB}$ (at 0 dBm , relative to 50 MHz reference, source attenuator 0 dB)	
Level accuracy (high temperature mode: on)		
300 kHz to 8.5 GHz		$\pm 0.8 \mathrm{~dB}$ (at $0 \mathrm{dBm}, 50 \mathrm{MHz}$ absolute, source attenuator 0 dB) $\pm 1.5 \mathrm{~dB}$ (at 0 dBm , relative to 50 MHz reference, source attenuator 0 dB)
Level accuracy (swept mode: on)		
300 kHz to 4.25 GHz		$\pm 2.5 \mathrm{~dB}$ (at 0 dBm , relative to 50 MHz reference, source attenuator 0 dB)
4.25 GHz to 8.5 GHz		$\pm 3.5 \mathrm{~dB}$ (at 0 dBm , relative to 50 MHz reference, source attenuator 0 dB)
Level linearity (at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)		
10 MHz to 3 GHz	$\pm 0.75 \mathrm{~dB}$ (at -15 dBm to 10 dBm)	
3 GHz to 4.25 GHz	$\pm 0.75 \mathrm{~dB}$ (at -15 dBm to 9 dBm)	
4.25 GHz to 6 GHz	$\pm 0.75 \mathrm{~dB}$ (at -10 dBm to 7 dBm)	
6 GHz to 8.5 GHz	$\pm 0.75 \mathrm{~dB}$ (at -15 dBm to 5 dBm)	
Level linearity (high temperature mode: on)		
300 kHz to 3 GHz		$\pm 1.5 \mathrm{~dB}$ (at -15 dBm to 10 dBm)
3 GHz to 4.25 GHz		\pm 1.5 dB (at -15 dBm to 9 dBm$)$
4.25 GHz to 6 GHz		$\pm 2.0 \mathrm{~dB}$ (at -15 dBm to 7 dBm)
6 GHz to 8.5 GHz		$\pm 2.0 \mathrm{~dB}$ (at -15 dBm to 5 dBm)
Level linearity (swept mode: on)		
300 kHz to 3 GHz		$\pm 1.5 \mathrm{~dB}$ (at -15 dBm to 10 dBm)
3 GHz to 4.25 GHz		$\pm 1.5 \mathrm{~dB}$ (at -15 dBm to 9 dBm)
4.25 GHz to 6 GHz		$\pm 3 \mathrm{~dB}$ (at -15 dBm to 7 dBm)
6 GHz to 8.5 GHz		$\pm 3 \mathrm{~dB}$ (at -15 dBm to 5 dBm)
Range (source attenuator 0 dB)		
300 kHz to 3 GHz	-15 dBm to 10 dBm	
3 GHz to 4.25 GHz	-15 dBm to 9 dBm	
4.25 GHz to 6 GHz	-15 dBm to 7 dBm	
6 GHz to 8.5 GHz	-15 dBm to 5 dBm	
Range (with source attenuators)		
300 kHz to 3 GHz		-50 dBm to 10 dBm (non-harmonics spurious may limit power range)
3 GHz to 4.25 GHz		-50 dBm to 9 dBm (non-harmonics spurious may limit power range)
4.25 GHz to 6 GHz		-50 dBm to 7 dBm (non-harmonics spurious may limit power range)
6 GHz to 8.5 GHz		-50 dBm to 5 dBm (non-harmonics spurious may limit power range)
Sweep range (source attenuator 0 dB)		
300 kHz to 3 GHz	-15 dBm to 10 dBm	-20 dBm to 10 dBm
3 GHz to 4.25 GHz	-15 dBm to 9 dBm	-20 dBm to 9 dBm
4.25 GHz to 6 GHz	-15 dBm to 7 dBm	-20 dBm to 7 dBm
6 GHz to 8.5 GHz	-15 dBm to 5 dBm	-20 dBm to 5 dBm
Level resolution	0.05 dB	

Test port output (source)

Table 1-9

Test port output signal purity

Description	Specification
Harmonics (2nd or 3rd)	Supplemental information
10 MHz to 2 GHz	$<-25 \mathrm{dBc}($ at 5 dBm, typical)
2 GHz to 3 GHz	$<-15 \mathrm{dBc}($ at 5 dBm, typical)
3 GHz to 8.5 GHz	$<-10 \mathrm{dBc}$ (at 5 dBm, typical)
Non-harmonic spurious	$<-25 \mathrm{dBc}$ (at 5 dBm, typical)
10 MHz to 3 GHz	$<-10 \mathrm{dBc}$ (at 5 dBm, typical)

Test port input

Table 1-10 Test port input levels

Description	Specification	Supplemental information
Maximum test port input level		
300 kHz to 3 GHz	+10 dBm	
3 GHz to 4.25 GHz	+9 dBm	
3 GHz to 6 GHz	+7 dBm	
6 GHz to 8.5 GHz	+5 dBm	
Damage level		
300 kHz to 8.5 GHz		
Crosstalk ${ }^{1}$		
3 MHz to 3 GHz	-120 dBCD (source attenuator $=0 \mathrm{~dB}$ (source attenuator $=5 \mathrm{~dB}$ or more, typical)	
3 GHz to 6 GHz	-109 dB	
6 GHz to 7.5 GHz	-99 dB	
7.5 GHz to 8.5 GHz	-89 dB	

Table 1-11 Test port input (trace noise ${ }^{2}$)

Description	Specification	Supplemental information
Trace noise magnitude		
300 kHz to 3 MHz (source power level $=+10 \mathrm{dBm}$)		5 mdB rms (typical) 8 mdB rms (high temperature mode: ON, typical)
3 MHz to 3 GHz (source power level $=+10 \mathrm{dBm}$)	1 mdB rms $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	4 mdB rms (high temperature mode: ON, typical)
3 GHz to 4.25 GHz (source power level $=+9 \mathrm{dBm}$)	1.2 mdB rms $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	4.8 mdB rms (high temperature mode: ON, typical)
4.25 GHz to 6 GHz (source power level $=+7 \mathrm{dBm}$)	$3.6 \mathrm{mdB} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	7.2 mdB rms (high temperature mode: ON, typical)
6 GHz to 7.5 GHz (source power level $=+5 \mathrm{dBm}$)	3.6 mdB rms $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	7.2 mdB rms (high temperature mode: ON, typical)
7.5 GHz to 8.5 GHz (source power level $=+5 \mathrm{dBm}$)	$6 \mathrm{mdB} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	9.6 mdB rms (high temperature mode: ON, typical)
Trace noise phase		
300 kHz to 3 MHz (source power level $=+10 \mathrm{dBm}$)		$0.035^{\circ} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$, typical) $0.05^{\circ} \mathrm{rms}$ (high temperature mode: ON, typical)
3 MHz to 3 GHz (source power level $=+10 \mathrm{dBm}$)		$0.007^{\circ} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$, typical) $0.02^{\circ} \mathrm{rms}$ (high temperature mode: ON, typical)
$\begin{aligned} & 3 \mathrm{GHz} \text { to } 4.25 \mathrm{GHz} \\ & \text { (source power level }=+9 \mathrm{dBm} \text {) } \end{aligned}$		$0.008^{\circ} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$, typical) $0.024^{\circ} \mathrm{rms}$ (high temperature mode: ON, typical)
4.25 GHz to 6 GHz (source power level $=+7 \mathrm{dBm}$)		$0.025^{\circ} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$, typical) $0.042^{\circ} \mathrm{rms}$ (high temperature mode: ON, typical)
6 GHz to 7.5 GHz (source power level $=+5 \mathrm{dBm}$)		$0.025^{\circ} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$, typical) $0.042^{\circ} \mathrm{rms}$ (high temperature mode: ON, typical)
7.5 GHz to 8.5 GHz (source power level $=+5 \mathrm{dBm}$)		$0.042^{\circ} \mathrm{rms}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$, typical) $0.06^{\circ} \mathrm{rms}$ (high temperature mode: ON, typical)

[^1]Table 1-12
Test port input (stability ${ }^{1}$)

Description	Specification	Supplemental information
Stability magnitude		
3 MHz to 3 GHz		$\begin{aligned} & 0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C} \\ & \text { (at } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {, typical) } \end{aligned}$
3 GHz to 6 GHz		$\begin{aligned} & 0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C} \\ & \text { (at } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {, typical) } \end{aligned}$
6 GHz to 8.5 GHz		$\begin{aligned} & 0.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C} \\ & \text { (at } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {, typical) } \end{aligned}$
Stability phase		
3 MHz to 3 GHz		$\begin{aligned} & 0.1^{\circ}{ }^{\circ} \mathrm{C} \\ & \text { (at } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {, typical) } \end{aligned}$
3 GHz to 6 GHz		$\begin{aligned} & 0.2^{\circ} /^{\circ} \mathrm{C} \\ & \text { (at } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {, typical) } \end{aligned}$
6 GHz to 8.5 GHz		$\begin{aligned} & 0.8^{\circ} /{ }^{\circ} \mathrm{C} \\ & \text { (at } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {, typical) } \end{aligned}$

Table 1-13
Test port input (dynamic accuracy)
Accuracy of the test port input power reading is relative to $\mathbf{- 1 0} \mathrm{dBm}$ reference input power level.

[^2]Table 1-14
Test port input (group delay ${ }^{1}$)

Description	Specification	Supplemental information
Aperture (selectable)	(frequency span)/(number of points -1$)$	
Maximum aperture	25% of frequency span	
Maximum delay		Limited to measuring no more than
		See graph below, typical

The following graph shows group delay accuracy with type-N full 2-port calibration and a 10 Hz IF bandwidth. Insertion loss is assumed to be $<2 \mathrm{~dB}$.

Group delay (typical)

In general, the following formula can be used to determine the accuracy, in seconds, of specific group delay measurement: \pm phase accuracy $(\mathrm{deg}) /[360 \mathrm{x}$ aperture $(\mathrm{Hz})]$

[^3]
General information

Table 1-15

Table 1-15	System bandwidths
Description	Supplemental information
IF bandwidth settings	
Range	10 Hz to 100 kHz
	Nominal settings are:
	$10,15,20,30,40,50,70,100,150,200,300,400,500,700$,
	$1 \mathrm{k}, 1.5 \mathrm{k}, 2 \mathrm{k}, 3 \mathrm{k}, 4 \mathrm{k}, 5 \mathrm{k}, 7 \mathrm{k}, 10 \mathrm{k}, 15 \mathrm{k}, 20 \mathrm{k}, 30 \mathrm{k}, 40 \mathrm{k}, 50 \mathrm{k}, 70 \mathrm{k}, 100 \mathrm{kHz}$

Table 1-16
Front panel information

Description	Supplemental information
RF connectors	
Type	Type-N, female; 50Ω, nominal
Display	
Size	10.4 in TFT color LCD
Resolution	VGA (640x480)

Table 1-17	Rear panel information
Description	Supplemental information
External trigger connector	
Type	BNC, female
Input level	LOW threshold voltage: 0.5 V HIGH threshold voltage: 2.1 V Input level range: 0 to +5 V
Pulse width	$\geq 2 \mu \mathrm{sec}$, typical
Polarity	Negative (downward) only
External reference signal input connector	
Type	BNC, female
Input frequency	$10 \mathrm{MHz} \pm 10 \mathrm{ppm}$, typical
Input level	$0 \mathrm{dBm} \pm 3 \mathrm{~dB}$, typical
Internal reference signal output connector	
Type	BNC, female
Output frequency	$10 \mathrm{MHz} \pm 10 \mathrm{ppm}$, typical
Signal type	Sine wave, typical
Output level	$0 \mathrm{dBm} \pm 3 \mathrm{~dB}$ into 50Ω, typical
Output impedance	50Ω, nominal
VGA video output	15-pin mini D-Sub; female; drives VGA compatible monitors
GPIB	24-pin D-Sub (type D-24), female; compatible with IEEE-488
Parallel port	36-pin D-Sub (type 1284-C), female; provides connection to printers
USB-host port	Universal serial bus jack, type A configuration (4 contacts inline, contact 1 on left); female; provides connection to printer, ECal module, USB/GPIB interface or multiport test set
Contact 1	Vcc: 4.75 to $5.25 \mathrm{VDC}, 500 \mathrm{~mA}$, maximum
Contact 2	-Data
Contact 3	+Data
Contact 4	Ground
USB (USBTMC ${ }^{1}$) interface port	Universal serial bus jack, type B configuration (4 contacts inline, contact 1 on left); female; provides connection to an external PC
LAN	10/100 BaseT Ethernet, 8-pin configuration; auto selects between the two data rates
Handler I/0 port	36-pin D-sub, female; provides connection to handler system
Line power ${ }^{2}$	
Frequency	47 Hz to 63 Hz
Voltage	90 to 132 VAC, or 198 to 264 VAC (automatically switched)
VA max	350 VA max.
1 USB Test and Measurement Class (TMC) interface that communicates over USB using USBTMC messages based on the IEEE 488.1 and IEEE 488.2 standards. 2 A third-wire ground is required.	

EMC, safety, and Environment

Description	Supplemental information
EMC	
ISM	European Council Directive 89/336/EEC EN / IEC 61326-1:1997+A1:1998 CISPR 11:1997+A1:1999 / EN 55011:1998+A1:1999 Group 1, Class A IEC 61000-4-2:1995 / EN 61000-4-2:1995+A1:1998 4 kV CD / 4 kV AD IEC 61000-4-3:1995 / EN 61000-4-3:1996+A1:1998 $3 \mathrm{~V} / \mathrm{m}, 80-1000 \mathrm{MHz}$, 80\% AM IEC 61000-4-4:1995 / EN 61000-4-4:1995 1 kV power / 0.5 kV Signal IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV Normal / 1 kV Common IEC 61000-4-6:1996 / EN 61000-4-6:1996 $3 \mathrm{~V}, 0.15-80 \mathrm{MHz}, 80 \% \mathrm{AM}$ IEC 61000-4-11:1994 / EN 61000-4-11:1994 100\% 1cycle
ICES/NMB-001	Canada ICES001:1998 Note: The performance of EUT will be within the specification over the RF immunity tests according to EN 61000-4-3 or EN 61000-4-6 except under the coincidence of measurement frequency and interference frequency.
U N10149	AS/NZS 2064.1/2 Group 1, Class A
Safety	
ISM	European Council Directive 73/23/EEC IEC 61010-1:1990+A1+A2 / EN 61010-1:1993+A2 INSTALLATION CATEGORY II, POLLUTION DEGREE 2 INDOOR USE IEC60825-1:1994 CLASS 1 LED PRODUCT
(S) LR95111C	CAN/CSA C22.2 No. 1010.1-92
Environment	
	This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/ electronic product in domestic household waste. Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control instrumentation" product. Do not dispose in domestic household waste. To return unwanted products, contact your local Agilent office, or see www.agilent.com/environment/product/ for more information.

Table 1-19

Description	Supplemental information
Operating environment	$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Temperature	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<1^{\circ} \mathrm{C}$ deviation from calibration temperature
Error-corrected temperature range	20% to 80% at wet bulb temperature $<+29^{\circ} \mathrm{C}$ (non-condensing)
Humidity	0 to $2,000 \mathrm{~m} \mathrm{(0}$ to 6,561 feet)
Altitude	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Non-operating storage environment	20% to 90% at wet bulb temperature $<40^{\circ} \mathrm{C}$ (non-condensing)
Temperature	0 to $4,572 \mathrm{~m} \mathrm{(0} \mathrm{to} 15,000$ feet)
Humidity	See figure $1-1$ through figure $1-3$.
Altitude	
Dimensions	$17.5 \mathrm{~kg}($ (option E5070B/E5071B-214, nominal) 19.5 kg (option E5070B/E5071B-414, nominal)
Weight	

Figure 1-1. Dimensions (front view, E5071B with option E5071B-414, in millimeters, nominal)

Figure 1-2. Dimensions (rear view, with option E5070B/E5071B-1E5, in millimeters, nominal)

Figure 1-3. Dimensions (side view, in millimeters, nominal)

Figure 1-4. Dimensions (top view, in millimeters, nominal)

Measurement throughput summary

Table 1-20 Typical cycle time for measurement completion ${ }^{1.2}$ (ms)

	Number of points			
Start 1 GHz, stop 1.2 GHz, 100 kHz IF bandwidth	201	401	$\mathbf{1 6 0 1}$	
Uncorrected	4			18
2-port cal	5	5	7	42

Start $\mathbf{3 0 0}$ kHz, stop $\mathbf{3}$ GHz, 100 kHz IF bandwidth

Uncorrected	11	12	13	23
2 -port cal	20	23	25	46

Start $\mathbf{3 0 0}$ kHz, stop $\mathbf{8 . 5} \mathbf{~ G H z}, 100$ kHz IF bandwidth

Uncorrected	19	24	24	24
2-port cal	37	46	48	50

Table 1-21 Typical cycle time for measurement completion ${ }^{1,3}$ (ms)

	Number of points			
	$\mathbf{5 1}$	$\mathbf{2 0 1}$	$\mathbf{4 0 1}$	$\mathbf{1 6 0 1}$
Start $\mathbf{1} \mathbf{G H z}$, Stop 1.2 GHz, 100 kHz IF bandwidth			22	
Uncorrected	4	6	8	56
2 -port cal	5	10	16	

Start 300 kHz, Stop $\mathbf{3}$ GHz, 100 kHz IF bandwidth

Uncorrected	11	12	13	23
2 -port cal	20	24	25	55

Start 300 kHz, Stop 8.5 GHz, 100 kHz IF bandwidth

Uncorrected	20	24	24	26
2-port cal	37	46	47	57

Table 1-22 Typical cycle time for measurement completion ${ }^{1.4}$ (ms)

	Number of points			
	$\mathbf{5 1}$	$\mathbf{2 0 1}$	$\mathbf{4 0 1}$	$\mathbf{1 6 0 1}$
Start $\mathbf{1} \mathbf{~ G H z}$, Stop $\mathbf{1 . 2 ~ G H z}, \mathbf{1 0 0} \mathbf{~ k H z ~ I F ~ b a n d w i d t h ~}$				
Uncorrected	7	17	29	90
2-port cal	12	32	55	178

Start $\mathbf{3 0 0}$ kHz, Stop $\mathbf{3}$ GHz, 100 kHz IF bandwidth

Uncorrected	14	27	43	130
2-port cal	26	50	84	258

Start 300 kHz, Stop 8.5 GHz, 100 kHz IF bandwidth

Uncorrected	16	30	49	146
2-port cal	30	57	96	291

[^4]Table 1-23
Cycle time ${ }^{1,2}$ (ms) vs. number of points ${ }^{1}$

Number of points	Fast swept mode system error correction 0FF	Fast swept mode system error correction 0N	Standard stepped mode system error correction 0N
3	4	4	4
11	4	4	4
51	4	4	7
101	4	5	11
201	5	6	17
401	8	8	29
801	11	13	52
1601	18	23	90

Table 1-24
Data transfer time ${ }^{1}$ (ms)

Number of points				
	$\mathbf{5 1}$	$\mathbf{2 0 1}$	$\mathbf{4 0 1}$	$\mathbf{1 6 0 1}$
SCPI over GPIB ${ }^{3}$				
64-bit floating point	5	16	29	109
ASCII	21	79	156	617

SCPI over 100 Mbps LAN (telnet) ${ }^{3}$

REAL 64	2	2	3	5
ASCII	34	128	254	995

SCPI over 100 Mbps LAN (SICL-LAN) ${ }^{3}$

REAL 64	4	4	5	8
ASCII	6	14	26	95

SCPI over USB (USBTMC) ${ }^{4}$

REAL 64	4	5	5	7
ASCII	6	18	33	126

COM (program executed in the analyzer) ${ }^{5}$

Variant type	1	1	1	1

[^5]
Measurement capabilities

$\left.\begin{array}{ll}\text { Number of measurement channels } & \begin{array}{l}\text { Up to } 16 \text { independent measurement channels. A measurement channel is coupled } \\ \text { to stimulus response settings including frequency, IF bandwidth, power level, } \\ \text { and number of points. }\end{array} \\ \hline \text { Number of display windows } & \begin{array}{l}\text { Each measurement channel has a display window. Up to } 16 \text { display windows (channels) } \\ \\ \text { can be displayed. }\end{array} \\ \hline \text { Number of traces } & \text { Six display modes (selectable): } \\ & 16 \text { data traces and } 16 \text { memory traces per channel at 4-channel mode } \\ & 9 \text { data traces and } 9 \text { memory traces per channel at } 9 \text {-channel mode }\end{array}\right\}$

[^6]
Source control

Measured number of points per sweep	User definable from 2 to $20,001^{1}$.
Sweep mode	Standard stepped, standard swept, fast stepped and fast swept.
Sweep type	Linear sweep, segment sweep, log sweep and power sweep.
Segment sweep	Define independent sweep segments. Set number of points, test port power levels, IF bandwidth, delay time, sweep time and sweep mode independently for each segment.
Sweep trigger	Set to continuous, hold, or single, sweep with internal, external, manual, or bus trigger.
Trigger event	Set trigger event dependent on sweep or data point.
Power	Set source power from -50 dBm to10 dBm. The power slope function and the power calibration function compensate source power level error.
Frequency-offset ${ }^{2}$	Set source frequency independently from where the receivers are tuned.

Trace functions

Display data	Display current measurement data, memory data, or current measurement and memory data simultaneously.
Trace math	Vector addition, subtraction, multiplication or division of measured complex values and memory data.
Title	Add custom title to each channel window. Titles are printed on hardcopies of displayed measurements.
Autoscale	Automatically selects scale resolution and reference value to vertically center the trace.
Electrical delay	Offset measured phase or group delay by a defined amount of electrical delay, in seconds.
Phase offset	Offset measured phase or group delay by a defined amount in degrees.
Statistics	Calculates and displays mean, standard deviation and peak-to-peak deviation of the data trace.
Frequency blank	Hide the frequency information to be displayed on the ENA screen.

[^7]
Data accuracy enhancement

Measurement calibration	Measurement calibration significantly reduces measurement uncertainty due to errors caused by system directivity, source and load match, tracking and crosstalk. Full 2-port, 3-port, or 4-port calibration removes all the systematic errors for the related test ports to obtain the most accurate measurements.
Calibration types available	
Response	Simultaneous magnitude and phase correction of frequency response errors for either reflection or transmission measurements.
Response and isolation	Compensates for frequency response and crosstalk errors of transmission measurements.
Enhanced response	Compensates for frequency response and source-match errors
One-port calibration	Available on test set port 1, port 2, port 3, or port 4 to correct for directivity, frequency response and source match errors.
Full 2-port/3-port/4-port calibration TRL/LRM calibration	Compensation for directivity, reflection, transmission frequency response and crosstalk in both forward and reverse directions. Provides the highest accuracy for accuracy for coaxial and non-coaxial environments, such as on-probing, in-fixture or waveguide measurements.
Interpolated error correction	With any type of accuracy enhancement applied, interpolated mode recalculates the error coefficients when the test frequencies are changed. The number of points can be increased or decreased and the start/stop frequencies can be changed.
Velocity factor	Enter the velocity factor to calculate the equivalent physical length.
Reference port extension	Redefine the measurement plane from the plane where the calibration was done.
Automatic port extension	Compensates for both electrical length and insertion loss by measuring open and/or short standard. Provides a simplified approach for fixture compensation.
Accessible calibration coefficients	Calibration coefficients can be easily read and written ${ }^{1}$ with programming commands.
Mixer calibration ${ }^{1}$	
Scalar-mixer calibration	Scalar-mixer calibration corrects the conversion loss for input port source match and output port load match. Scalar-mixer calibration also corrects the input match measurements for input port directivity, frequency response, and source match at the input frequencies and corrects the output match measurements for output port directivity, frequency response, and source match at output frequencies. This calibration offers the conversion loss/gain measurements with correcting the mismatches of both input and output test ports.
Vector-mixer calibration	Vector-mixer calibration corrects for directivity, source match, load match, and reflection frequency response at each test port by using a characterized calibration mixer with de-embedding function. This calibration provides the measurements of phase and absolute group delay. The characterization of the calibration mixer is part of the calibration process.

Storage

Removable hard disk drive	Store and recall instrument states, calibration data, and trace data on 3 GB , minimum, removable hard drive. Trace data can be saved in CSV (comma separated value) format. All files are MS-DOS ${ }^{\circledR}$-compatible. Instrument states include all control settings, limit lines, segment sweep tables, and memory trace data.
File sharing	Internal hard disk drive (D:) can be accessed from an external Windows ${ }^{\circledR}$ PC through LAN.
Disk drive	Instrument states, calibration data, and trace data can be stored on an internal 3.5 inch 1.4 MB floppy disk in MS-DOS ${ }^{\circledR}$-compatible format.
Screen hardcopy	Printouts of instrument data are directly produced on a printer. The analyzer provides USB and parallel interfaces.

System capabilities

Familiar graphical user interface	The ENA Series analyzer employs a graphical user interface based on Windows ${ }^{\text {® }}$ operating system. There are thre ways to operate the instrument manually: you can use a hardkey interface, touch screen interface (option E5070B/E5071B-016) or a mouse interface.
Limit lines	Define the test limit lines that appear on the display for pass/fail testing. Defined limits may be any combination of horizontal/sloping lines and discrete data points. The offset limit line function adjusts offset values to the frequency and output level.
Limit test	Defines the stop and start frequency and the maximum allowable ripple value of each frequency band. Ripple limit test may set up as many as 12 frequency bands for testing ripple. The frequency bands are combined in a list that is displayed while the ripple frequency bands are being edited.
Ripple limit test	Defines the amplitude below the peak and the minimum and maximum allowable bandwidths.
Bandwidth limit test	Access to the ENA from any JavaTM-enable Web browser via LAN interface. ENA can be controlled from a remote location without using special software.
Fixture simulator	Convert data from single-ended measurement to balanced measurement parameters (mixed-mode S-parameters), balanced parameters or CMRR by using internal software.
Balance-unbalance conversion	De-embed an arbitrary circuit defined by a two-port Touchstone data file (50 Ω system) for each test port. This function eliminates error factors between calibration plane and DUT and expands the calibration plane for each test port. This function can be used with the port extension function.
Network de-embedding	Convert S-parameters measured in 50 Ω reference impedance to data in other reference impedance levels by using internal software. This conversion can be performed for both single-ended (unbalance) measurement ports and converted balanced measurement ports.
Port reference impedance conversion	Add one of predefined matching circuits or a circuit defined by a two-port Touchstone data file to each single-ended test port or converted balanced (differential) test port by using internal software.

Automation

	GPIB	Internal
SCPI	X	X
COM		X

Methods	Applications can be developed in a built-in VBA® (Visual Basic for Applications) language. Applications can be executed from within the analyzer via COM (component object model) or using SCPI.
Internal analyzer execution	The GPIB interface operates to IEEE 488.2 and SCPI protocols. The analyzer can be controlled by a GPIB external controller. The analyzer can control external devices using a USB/GPIB interface.
Controlling via GPIB	The USB interface operates to USBTMC and SCPI protocols. The analyzer can be controlled by an external PC using the USB interface with a USB cable.
Controlling via USB (USBTMC)	
LAN	10 BaseT or 100 BaseTX (automatically switched), Ethertwist, Standard conformity
RJ45 connector	

E5091A multiport test set

The section provides test set input/output performance without calibration by the E5070B/E5071B.

Table 2-1
Test set input/output performance

Description	Specification	Supplemental information
Range	50 MHz to 8.5 GHz	
Damage level		$20 \mathrm{dBm}, \pm 25 \mathrm{VDC}$ (typical)

Table 2-2 Option E5091A-009 port performance

Description	Specification				
	50 MHz to 300 MHz	300 MHz to 1.3 GHz	1.3 GHz to $\mathbf{3} \mathrm{GHz}$	3 GHz to 6 GHz	6 GHz to 8.5 GHz
Load match					
Test port selected					
A, T2, R1+, R1-	19 dB	20 dB	18 dB	12 dB	10 dB
T1, R2+, R2-, R3+, R3-	15 dB	17 dB	15 dB	11 dB	8 dB
Test port unselected					
A, T2, R1+, R1-, R3+, R3-	23 dB	25 dB	19 dB	12 dB	11 dB
T1, R2+, R2-	18 dB	20 dB	16 dB	12 dB	9 dB
Interconnect port, typical					
P1, P2, P3, P4	19 dB	19 dB	17 dB	13 dB	9 dB
Insertion loss					
Test port					
A, T2, R1+, R1-	3 dB	3 dB	4 dB	5 dB	6 dB
T1, R2+, R2-, R3+, R3-	5 dB	5 dB	7 dB	8 dB	9.5 dB
Stability, typical	$0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.015 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
Isolation					
Over arbitrarily test ports	$-100 \mathrm{~dB}$	-100 dB	-100 dB	-100 dB	$-90 \mathrm{~dB}$

Table 2-3
Option E5091A-016 port performance

Description	Specification				
	50 MHz to $\mathbf{3 0 0} \mathbf{M H z}$	300 MHz to 1.3 GHz	1.3 GHz to $\mathbf{3}$ GHz	3 GHz to 6 GHz	6 GHz to 8.5 GHz
Load match					
Test port selected					
A, T4, R1+, R1-, R2+, R2-, R3+, R3-, R4+, R4-	15 dB	17 dB	15 dB	9 dB	8 dB
T1, T2, T3	12 dB	14 dB	14 dB	8 dB	6 dB
Test port unselected					
$\begin{aligned} & \text { A, T4, T2, R1+, R1-, R2+, R2- } \\ & \text { R3+, R3-, R4+, R4-, R4- } \end{aligned}$	18 dB	20 dB	16 dB	10 dB	9 dB
T1, T2, T3	13 dB	15 dB	14 dB	8 dB	6 dB
Interconnect port, typical					
P1, P2, P3, P4	12 dB	12 dB	12 dB	9 dB	7 dB
Insertion loss					
Test port					
A, T4, R1+, R1-, R2+, R2-, R3+, R3R4+, R4-	-, 6 dB	6 dB	7 dB	8 dB	9.5 dB
T1, T2, T3	6 dB	9 dB	10.5 dB	12 dB	14.5 dB
Stability per switch, typical	$0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.005 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$0.015 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
Isolation					
Over arbitrarily test ports	$-100 \mathrm{~dB}$	$-100 \mathrm{~dB}$	$-100 \mathrm{~dB}$	$-100 \mathrm{~dB}$	-80 dB

Table 2-4
Front panel information

Description	Supplemental information
RF connectors	
Interconnect ports	
Type	Type-N, female, 50Ω, nominal
Number of ports	4 ports
Test ports (Option E5091A-009)	
Type	Type-N, female, 50Ω, nominal
Number of ports	9 ports
Test ports (Option E5091A-016)	
Type	SMA, female, 50Ω, nominal
Number of ports	25 ports (includes configurable switch port)
Control line	15 pin D-sub, female

Table 2-5
Rear panel information

Description	Supplemental information
USB port	Type B-receptacles, provide connection to the E5070B/E5071B
Line power ${ }^{1}$	
Frequency	47 Hz to 63 Hz
Voltage	90 to 132 VAC, or 198 to 264 VAC (automatically switched)
VA max	150 VA max.

For EMC, safety and environment information, refer to E5070B/E5071B section.

Table 2-6	Test set dimensions and block diagram
Description	Supplemental information
Dimensions	
Option E5091A-009	See figure 2-1, 2-3, and 2-4
Option E5091A-016	See figure 2-2, 2-3, and 2-5
Weight	6 kg
Option E5091A-009	7 kg
Option E5091A-016	
Block diagram	See figure 2-6

Figure 2-1. Dimensions (front view, with option E5091A-009, in millimeters, nominal)

${ }^{1} \mathrm{~A}$ third-wire ground is required.

Figure 2-2. Dimensions (front view, with option E5091A-016, in millimeters, nominal)

Figure 2-3. Dimensions (rear view, in millimeters, nominal)

Figure 2-4. Dimensions (side view, with Option E5091A-009, in millimeters, nominal)

Figure 2-5. Dimensions (side view, with Option E5091A-016, in millimeters, nominal)

Figure 2-6. Block diagram

E5092A configurable multiport test set

The section provides test input/output performance without calibration by the E5071B.

Table 3-1
Test set input/output performance

Description	Specification	Typical
Frequency range	50 MHz to 20 GHz	
Damage level		$20 \mathrm{dBm}, \pm 35 \mathrm{VDC}$

Table 3-2

Option E5092A-020 port performance

Description	Specification
Load match (selected port)	
SPDT switch ${ }^{1}$	
50 MHz to 2 GHz	
2 GHz to 4 GHz	17 dB
4 GHz to 8 GHz	11 dB
8 GHz to 10 GHz	8 dB
10 GHz to 18 GHz	7 dB
18 GHz to 20 GHz	4 dB
$\mathrm{SP4T}$ switch 2	4 dB
50 MHz to 2 GHz	
2 GHz to 3 GHz	17 dB
3 GHz to 8 GHz	11 dB
8 GHz to 10 GHz	8 dB
10 GHz to 18 GHz	7 dB
18 GHz to 20 GHz	4 dB

Load match (unselected port)	
SPDT switch	
50 MHz to 3 GHz	
3 GHz to 10 GHz	17 dB
10 GHz to 16 GHz	11 dB
16 GHz to 18 GHz	8 dB
18 GHz to 20 GHz	6 dB
SP4T switch ${ }^{2}$	4 dB
50 MHz to 3 GHz	
3 GHz to 10 GHz	17 dB
10 GHz to 16 GHz	11 dB
16 GHz to 18 GHz	8 dB
18 GHz to 20 GHz	6 dB

[^8]Table 3-2
Option E5092A-020 port performance (continued)

Description	Specification	Typical
Load match (common port)		
SPDT switch ${ }^{1}$		
50 MHz to 2 GHz	16 dB	
2 GHz to 4 GHz	11 dB	
4 GHz to 8 GHz	8 dB	
8 GHz to 10 GHz	7 dB	
10 GHz to 20 GHz	4 dB	
SP4T switch ${ }^{2}$		
50 MHz to 1.3 GHz	16 dB	
1.3 GHz to 4 GHz	11 dB	
4 GHz to 8 GHz	8 dB	
8 GHz to 10 GHz	7 dB	
10 GHz to 20 GHz	4 dB	
Insertion loss		
SPDT switch ${ }^{1}$		
50 MHz to 100 MHz	4 dB	
100 MHz to 2 GHz	3.5 dB	
2 GHz to 3 GHz	4.5 dB	
3 GHz to 4 GHz	5 dB	
4 GHz to 6 GHz	5.5 dB	
6 GHz to 8 GHz	7 dB	
8 GHz to 10 GHz	8 dB	
10 GHz to 14 GHz	8.5 dB	
14 GHz to 18 GHz	10 dB	
18 GHz to 20 GHz	11.5 dB	
SP4T switch ${ }^{2}$		
50 to 100 MHz	4 dB	
100 MHz to 2 GHz	3.5 dB	
2 GHz to 3 GHz	4.5 dB	
3 GHz to 4 GHz	5.5 dB	
4 GHz to 6 GHz	6 dB	
6 GHz to 8 GHz	7.5 dB	
8 GHz to 10 GHz	8.5 dB	
10 GHz to 14 GHz	9.5 dB	
14 GHz to 18 GHz	10.5 dB	
18 GHz to 20 GHz	12 dB	
Stability		
50 MHz to 6 GHz		$0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
6 GHz to 20 GHz		$0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (Stability per switch)
Isolation ${ }^{3}$		
50 MHz to 500 MHz	65 dB	
500 MHz to 1 GHz	80 dB	
1 GHz to 2 GHz	85 dB	
2 GHz to 6 GHz	90 dB	
6 GHz to 10 GHz	85 dB	
10 GHz to 18 GHz	75 dB	
18 GHz to 20 GHz	65 dB (Over a	

[^9]
Table 3-3

Control line

Description	Specification	Typical
Number of groups	4	
	Group A: 8 bits	
	Group B, C, D: 4 bits	
Input voltage range ${ }^{1}$	0 V to +5 V (positive input)	
Maximum current	-5 V to 0 V (negative input)	
	Group A, B: 50 mA in total of each group	
Impedance	Group C, D: $500 \mu \mathrm{~A}$ in total of each group	Group A, B: <10 ohm
		Group C, D: <200 ohm

Table 3-4
DC source

Description	Specification	Typical
Number of sources	4	
Output voltage range		0 V to +5.2 V (nominal) ${ }^{2}$
Output voltage accuracy	$\pm 3 \%$ of setting (+1 V to +5 V) at	
Voltage resolution	1 M ohm load impedance	
Maximum current		150 mA for each source (nominal)
Output impedance		<5 ohm

Table 3-5
Operating storage environment

Description	General characteristics
Temperature	$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Humidity	20 to 80% at wet bulb temperature $<+29^{\circ} \mathrm{C}$ (non-condensing)
Altitude	0 to $2,000 \mathrm{~m}(0$ to 6,561 feet)
Vibration	$0.21 \mathrm{G} \mathrm{max.,5} \mathrm{to} 500 \mathrm{~Hz}$

Table 3-6
Non-operating storage environment

Description	General characteristics
Temperature	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Humidity	20 to 90% at wet bulb temperature $<+40^{\circ} \mathrm{C}$ (non-condensing)
Altitude	0 to $4,572 \mathrm{~m}(0$ to 15,000 feet)
Vibration	$0.5 \mathrm{G} \mathrm{max.,5} \mathrm{~Hz}$ to 500 Hz

[^10]Table 3-7

Front panel information

Description	General characteristics
RF connectors	SMA
Test ports	38 ports
Control line	15 -pin D-sub, female
	25 -pin D-sub, female

Table 3-8 Rear panel information

Description	General characteristics
USB port	Type B-receptacle, provide connection to the E5071C
Line power ${ }^{1}$	47 to 63 Hz
Frequency	90 to 132 VAC, or 198 to 264 VAC
Voltage	(automatically switched) 300 VA max.
VA max	

Table 3-9
Test set dimensions and block diagram

Description	General characteristics
Dimensions	See Figures 3-1, 3-2, 3-3 and 3-4
E5092A Option 020	9 kg

Figure 3-1. Dimensions (front view, with Option E5092A-020, in millimeters, nominal)

[^11]Figure 3-2. Dimensions (pitch between switches, with Option E5092A-020, in millimeters, nominal)

Figure 3-3. Dimensions (rear view, with Option E5092A-020, in millimeters, nominal)

Figure 3-4. Dimensions (side view, with Option E5092A-020, in millimeters, nominal)

Figure 3-5. Switch confi guration (E5092A-020)

Figure 3-6. DC control line (E5092A-020)

Corrected system performance for 75Ω measurements with 11852B 50Ω to 75Ω minimum-loss pads (supplemental information)

Table 4-1 Corrected system performance with type-N 75Ω device connectors, 85036E calibration kit
Network analyzer: E5070B/E5071B, calibration kit: 85036E (type-N 75Ω), 50Ω to 75Ω adapters: 11852B, calibration: full 2-port

IF bandwidth $=10 \mathrm{~Hz}$, no averaging applied to data, environmental temperature $=23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<1^{\circ} \mathrm{C}$ deviation from calibration temperature, Isolation calibration not omitted

Description	Supplemental information (dB, typical)
$\mathbf{3 ~ M H z ~ t o ~} \mathbf{3} \mathbf{~ G H z}$	
Directivity	37
Source match	33
Load match	37
Reflection tracking	± 0.017
Transmission tracking	± 0.021

Transmission uncertainty 3 MHz to $\mathbf{3} \mathbf{G H z}$ (supplemental information, typical)

Magnitude

Reflection uncertainty $\mathbf{3 ~ M H z}$ to $\mathbf{3} \mathbf{G H z}$ (supplemental information, typical) Magnitude

Phase

Phase

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Agilent
Open

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Web Resources

For additional product information and literature, please visit our Web sites.

ENA RF network analyzers
www.agilent.com/find/ena
Test and measurement accessories
www.agilent.com/find/accessories

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:
www.agilent.com/find/removealldoubt

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas

Canada	$(877) 894-4414$
Latin America	3052697500
United States	$(800) 829-4444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Thailand	1800226008

Europe \& Middle East

Austria	013602771571
Belgium	$32(0) 24049340$
Denmark	4570131515
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	$070314646333^{* *}$
	${ }^{* *} 0.14 € /$ minute
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
Switzerland	0800805353
United Kingdom	$44(0) 1189276201$
Other European Countries:	
www.agilent.com/find/contactus	
Revised: August 14, 2008	

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2002, 2003, 2004, 2005, 2008
Printed in USA, September 25, 2008 5988-3780EN

[^0]: ${ }^{1}$ The test port dynamic range is calculated as the difference between the test port rms noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainty and interfering signals into account.
 ${ }^{2}$ May be limited to 90 dB at particular frequencies below 350 MHz or above 4.25 GHz due to spurious receiver residuals.

[^1]: ${ }^{1}$ Response calibration not omitted.
 ${ }^{2}$ Trace noise is defined as a ratio measurement of a through, at IF bandwidth $=3 \mathrm{kHz}$.

[^2]: ${ }^{1}$ Stability is defined as a ratio measurement at the test port.

[^3]: ${ }^{1}$ Group delay is computed by measuring the phase change within a specified step (determined by the frequency span and the number of points per sweep).

[^4]: ${ }^{1}$ Typical performance.
 ${ }^{2}$ Fast swept mode. System error correction OFF. Analyzer display turned off with : DISP:ENAB OFF. Number of traces $=1$.
 ${ }^{3}$ Fast swept mode. System error correction ON. Analyzer display turned off with :DISP:ENAB OFF. Number of traces $=1$.
 ${ }^{4}$ Standard stepped mode. System error correction ON. Analyzer display turned off with :DISP:ENAB OFF. Number of traces $=1$.

[^5]: ${ }^{1}$ Typical performance.
 ${ }^{2}$ Start 1 GHz , stop $1.2 \mathrm{GHz}, 100 \mathrm{kHz}$ IF bandwidth, Error correction OFF, display update: OFF, number of traces $=1$.
 ${ }^{3}$ Measured using a VEE 6.0 program running on a 733 MHz Pentium III HP Kayak, Transferred complex S_{11} data, using :CALC:DATA?SDATA.
 ${ }^{4}$ Measured using a VEE 7.0 program running on a 500 MHz Pentium III DELL OptiPlex, transferred complex S_{11} data.
 ${ }^{5}$ Measured using an E5070B/E5071B VBA macro running inside the analyzer. Transferred complex S_{11} data.

[^6]: ${ }^{1}$ Option E5070B-010 or E5071B-010 is required.

[^7]: ${ }^{1} 20,001$ points measurement is available only for 4 data traces and 4 memory traces per channel in 1 - channel mode
 ${ }^{2}$ Option E5070B-008 or E5071B-008 is required.

[^8]: ${ }^{1}$ SPDT: Single-pole-double-throw switches. Applies to SW5, SW6, SW7, SW8, SW9 and SW10 in the E5092A. (See Figure 3-5.)
 ${ }^{2}$ SP4T: Single-pole-four-throw switches. Applies to SW1, SW2, SW3 and SW4 in the E5092A. (See Figure 3-5.)

[^9]: ${ }^{1}$ SPDT: Single-pole-double-throw switches. Applies to SW5, SW6, SW7, SW8, SW9 and SW10 in the E5092A. (See Figure 3-5.)
 ${ }^{2}$ SP4T: Single-pole-four-throw switches. Applies to SW1, SW2, SW3 and SW4 in the E5092A. (See Figure 3-5.)
 ${ }^{3}$ This specification is defined when all ports are terminated with a 50 ohm load.

[^10]: ${ }^{1}$ Input voltage will be clipped at about $\pm 5.2 \mathrm{~V}$ when over this range.
 2 The output voltage can be set in this range.
 ${ }^{3}$ The output voltage resolution becomes effective between 0 V to 5.2 V .

[^11]: ${ }^{1} 1 \mathrm{~A}$ third-wire ground is required.

