9. REPAIR

The 16074A is not field repairable. If any of the standards or terminations are damaged or if a significant nominal value change is observed,

return the unit to Hewlett-Packard for service. For complete information on service or calibration, contact the nearest Hewlett-Packard office.

Table-1. Specifications.

Contents:

Resistors --- 0Ω , 0.1Ω , 1Ω , 10Ω ,

 100Ω , $1k\Omega$, $10k\Omega$ and $100k\Omega$

Terminations --- open and short

Inductors --- 100µH and 100mH

Useable frequency: DC to 13MHz

Accessory furnished:

Im cable --- HP P/N: 16074-61600

Environmental temperature:

23°C ± 5°C

Characteristics:

Nominal Value	Equivalent Circuit	Parameter Main/Sub	Calibration Accuracy	Typical Frequency Characteristic	Typical Temperature Coefficient
0.1Ω±10% *1	Rs Ls	Rs	±0.1% at DC	$\pm \frac{f^2 MHz}{1000} \%$	±100 PPM
		Ls	0 ± 1nH up to 1MHz	-	***************************************
1Ω±10% *1	Rs Ls owo	Rs	±0.1% at DC	$\pm \frac{f^2 MHz}{1000} \%$	-60 PPM
		Ls	±0.2nH at lMHz		
10Ω ± 10% *]	Rs Ls	Rs	±0.03% at DC	$\pm \frac{f^2MHz}{1000}\%$	-60 PPM
		Ls	O ± lnH up to lOMHz		
100Ω ± 0.1%	Rs Ls	Rs	±0.03% at DC	$\pm \frac{f^2MHz}{1000}\%$	±10 PPM
		Ls	±20nH at 1MHz	<u></u>	
1kΩ ± 0.1%	Rp Cp	Rp	±0.03% at DC	$\pm \frac{f^2MHz}{1000}\%$	±10 PPM
		Ср	±0.2pF at 1MHz	<u></u>	
10kΩ±0.1%	Rp Cp	Rp	±0.03% at DC	± 2f ² MHz %	±10 PPM
		Ср	±0.2pF at 1MHz		
100kΩ ± 0.1%	Rp Cp	Rp	±0.03% at DC	<u>+</u> 2f ² MHz %	±10 PPM
		Ср	±0.2pF at 1MHz	<u> </u>	
100 mH + 2kΩ	Ls Rs *2	Ls	100nF measurement error + 0.1%	<u>+</u> 10f²MHz %	±10 PPM
	Ls = R1 · R2 · C(H)	Rs	±0.03% at DC	±ωLD *4	
100µH + 632Ω	Ls Rs *2 0	Ls	1000pF measurement error + 0.2%	$\pm 4 \left(\frac{\text{fMHz}}{10}\right)^2 \%$	±10 PPM
	*3 Ls = R1 · R2 ·(C - 7.1pF)(H)	Rs	±0.03% at DC	±ωLD *4	

- *1 The calibration values of 0.1Ω thru 10Ω resistors are defined as the difference (respectively resistance and residual reactance) on the basis of 0Ω .
- *2 Rs is equal to R: plus R2.
- $\star 3$ This equation includes a compensation of the stray capacitance associated with the BNC terminals.
- *4 D is the dissipation value of the capacitor at the respective setting frequencies.

Dimensions:

423(W) x 120(H) x 186(W) mm

Weight:

Approximately 4.4kg