PM 6681 / PM 6681R

Timer / Counter / Analyzers Rubidium Frequency Reference / Counter / Calibrator

PM 6681 : the highest performance timer/counter/ analyzer available

The PM 6681 from Fluke sets the new standard for measurement and analysis of time intervals, frequency, phase and jitter. For development, calibration or challenging production test applications, the PM 6681 is the leader.

Check these key PM 6681 performance parameters, and compare the new state-of-the-art for yourself:

- 50 ps single-shot time interval resolution (1 ps averaged)
- 1.25 mV vertical resolution
- 300 MHz range, options to 8 GHz
- 8 k readings/s to internal memory
- 250 readings/s over GPIB
- Continuous single-period measurements at up to 40 k readings/s
- Unique hold-off and arming delay facilities to measure any part of any complex signal
- TimeView ${ }^{\text {TM }}$ PC software for time and frequency analysis

So for the ultimate performance, choose the advanced PM 6681.

PM 6681R: ideal for calibration applications

The Rubidium reference of the PM 6681R makes this instrument the most accurate Frequency Reference/Counter/Calibrator for the calibration of frequency, time or phase.

- High accuracy and short warmup times:
5 min . to lock 4×10^{-10} within $>10 \mathrm{~min}$. Aging 1×10^{-9} in 10 year
- Calibrates Frequency, Time or Phase
- Calibrates any application specific frequency
- 5x 10 MHz \& 1 x 5 MHz buffered reference outputs

Measuring Functions

Refer to table 1 for uncertainty information. Inputs A and B can be swapped internally in all modes except Rise and Fall Time.

Frequency A, B, C

Range:
Input A :
Input B :
Input C:
$10^{-10} \mathrm{~Hz}$ to 300 MHz
$10^{-10} \mathrm{~Hz}$ to 100 MHz
2.7 GHz or 8 GHz with options

Resolution:

Frequency Burst A, B, C

Frequency and PRF of burst signals can be measured without external control signal and with selectable start arming delay.

Range:
nput A:
Input B:
Input C:
Up to 300 MHz
Up to 100 MHz
Up to 8 GHz with options
200 ns to $1 \mathrm{~s}, 100 \mathrm{~ns}$ resolution

Start Delay Range

Period A

Range:	3.3 ns to 10 s
Resolution:	11 digits in 1 s measuring time

Ratio $A / B, C / B$

Range:
Frequency Range:
Input A, B :
Input C:
10^{-9} to 10^{15}
$10^{-10} \mathrm{~Hz}$ to 160 MHz
2.7 GHz or 8 GHz with options

Time Interval \boldsymbol{A} to \mathbf{B}

Range:	0 ns to $10^{10} \mathrm{~s}$
Resolution	
single shot: Frequency Range:	$50 \mathrm{ps}(1 \mathrm{ps}$ average)
	Up to 160 MHz
Pulse Width \boldsymbol{A}	
Range: 3 ns to $10^{10} \mathrm{~s}$ Frequency Range: Up to 160 MHz	

Rise and Fall Time A

Range:
Frequency Range:
Input Amplitude:

Phase A Relative B

Range:	-180° to $+360^{\circ}$
Resolution:	0.01
Frequency Range:	0.03 Hz to 160 MHz

Duty Factor A
Range:
Frequency Range:
0 to 1
0.11 Hz to 160 MHz

Totalize A, B

Range:
 Frequency Range:

A Gated by B:

A Start/Stop by B:
Manual A-B:

0 to $10^{17}, 0$ to 10^{10} in A-B modes
0 to 160 MHz
Event counting on Input A during the presence of a pulse on Input B. Single or cumulative event counting during set measuring time Event counting on Input A between two consecutive pulses on Input B Input A minus Input B event counting with manual start and stop

Input A minus Input B event counting with manual start. Stop after set measuring time. Time counted from first trigger event on A.

AC/DC Voltage A, B

Range:
Frequency Range:
Mode:
Resolution:
Gated Volt:
-50 V to +50 V
DC, 1 Hz to 100 MHz
$\mathrm{V}_{\text {max }}, \mathrm{V}_{\text {min }}, \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
1.25 mV

External masking of unwanted signal components such as overshoot

Input and Output Specifications

Inputs A and B

Frequency Range:

DC-Coupled
AC-Coupled:
Coupling:
Impedance:

Trigger Slope:
Channel Inputs:
Max. channel timing difference: Sensitivity:

Pulse Width:
Attenuation:
Hysteresis Window (xl):
Variable Hysteresis A (xl)
Dynamic Range (xl):

Trigger Level
Range:
Resolution (xl):
Uncertainty (xl):
AUTO Trigger Level

Frequency:
Low Pass Filter A:
Digital Low Pass Filter:
Trigger Indicator: Max Voltage Without
Damage: $1 \mathrm{M} \Omega$:

DC to 300 MHz
10 Hz to 300 MHz
AC or DC
$1 \mathrm{M} \Omega / 15 \mathrm{pF}$ or 50Ω (VSWR 2:1)
$1 \mathrm{M} \Omega / 65 \mathrm{pF}$ or 50Ω with
PM 9611/80 rear panel inputs
Positive or negative
Separate, common A or swapped
500 ps
20 mV rms, $<100 \mathrm{MHz}$
25 mV ms, 100 MHz to 200 MHz
$40 \mathrm{mV} \mathrm{ms}, 200 \mathrm{MHz}$ to 250 MHz
60 mV rms, $>250 \mathrm{MHz}$
$>5 \mathrm{~ns}$ at 60 mV p-p,
$>3 \mathrm{~ns}$ at 90 mV p-p
x 1 or x 10
20 mV p-p
30 mV p-p to 10 V p-p up to 120 MHz
60 mV p-p to 10 V p-p (up to 100 MHz) within $\pm 5 \mathrm{~V}$ window
75 mV p-p to 10 V p-p (100 to 200 MHz)
within $\pm 5 \mathrm{~V}$ window
Read-Out on display
(x1): -5 V to +5 V
(x10): -50 V to +50 V
1.25 mV
$\pm(4 \mathrm{mV}+0.8 \%$ of trigger level)
Trigger level is automatically set
to 50% point of input signal
(10\% and 90\% for Rise/Fall Time,
75% and 25% for variable hysteresis A)
$>1 \mathrm{~Hz}$
100 kHz fixed. $>40 \mathrm{~dB}$
attenuation at 1 MHz
1 Hz to 10 MHz using trigger Hold-Off Tri-state LED-indicator
$350 \mathrm{~V}(\mathrm{DC}+\mathrm{AC} \mathrm{pk})$ at DC to 440 Hz , falling to 12 V rms (x 1) and 120 V rms (x10) at 1 MHz
12 V rms

Input C (Option PM 9624)	
Frequency Range:	100 MHz to 2.7 GHz
Prescale Factor:	32
Operating Input Voltage	
Range:	
100 to 300 MHz :	20 mV rms to 12 V ms
0.3 to 2.5 GHz :	10 mV rms to 12 V rms
2.5 to 2.7 GHz :	20 mV ms to 12 V ms
Amplitude Modulation:	
DC to 0.1 MHz :	Up to 94\% depth
0.1 to 6 MHz :	Up to 85\% depth
Minimum signal must exceed minimum operating input voltage	
Impedance:	50Ω nominal, AC coupled, VSWR <2.5:1
Max Voltage Without	
Damage:	12V rms, pin-diode protected
Connector:	Type N Female
Input C (Option PM9638)	
Frequency range	300 MHz to 8 GHz
Prescaler factor	256
Operating input voltage	
300 ... 500 MHz	-21 dBm (20 mVms)
$0.5 \ldots 3.0 \mathrm{GHz}$	-27 dBm (10 mVms)
3.0 ... 4.5 GHz	-21 dBm (20 mVms)
4.5 ... 6.0 GHz	-15 dBm (40 mVms)
6.0 ... 8.0 GHz	-9 dBm (80 mVrms)
Max. input level	+30 dBm (7 Vrms)
Input Impedance	50Ω nominal, VSWR < 2:1
Connector	N -type (female)
Rear Panel Inputs and Outputs	
Reference Input:	1, 2, 5, or $10 \mathrm{MHz}>200 \mathrm{mV}$ rms signal
Reference Output:	$1 \mathrm{x} 10 \mathrm{MHz}>0.5 \mathrm{~V}$ ms sinewave into 50 Ω load
PM 6681R:	$5 \mathrm{x} 10 \mathrm{MHz} \& 1 \mathrm{x} 5 \mathrm{MHz} .>0.5 \mathrm{~V} \mathrm{~ms}$ sinewave into 50Ω load
Arming Input:	Most measuring functions can be performed.
Frequency Range	DC to 100 MHz
Slew Rate:	$>2 \mathrm{~V} / \mathrm{s}$
Trigger Level:	TT L level, 1.4V nominal
Trigger Slope:	Positive or negative
Gate Output:	Gate open/gate closed signal output
Trigger Level Outputs:	Outputs for channel A and B trigger levels
Probe Compensation Outputs:	Outputs for channel A and B to adjust for best pulse response when using probes for counter input
Analog output:	0 to 4.98 V proportional to 3 selected digits

Auxiliary Functions

Trigger Hold-Off	
Time Delay Range:	60 ns to $1.34 \mathrm{~s}, 10 \mathrm{~ns}$ resolution
Event Delay Range B:	2 to $2^{24}-1$, max. 100 MHz

External Arming	
Time Delay Range B, E: 200 ns to $1.6 \mathrm{~s}, 100 \mathrm{~ns}$ resolution Event Delay Range B:	2 to $2^{24}-1$, max. 20 MHz
Statistics Maximum, Minimum, Mean and Standard Deviation Functions: Sample Size: to 2×10^{9} samples	

Mathematics	
Functions:	$\left(\mathrm{K}^{*} \mathrm{X}+\mathrm{L}\right) / \mathrm{M}$ and $(\mathrm{K} / \mathrm{X}+\mathrm{L}) / \mathrm{M} . \mathrm{X}$ is current reading and K, L and M are constants; set via keyboard or as frozen reference value (X_{0}) or as value from preceding measurement (X_{n-1})
Other Functions	
Measuring Time:	Single cycle, 80, 160, 320, 640, 1280 ns and 20 us to 20s (or to 400s for some functions)
Display Hold:	Freezes measuring result, until a new measurement is initiated via Restart
Settings:	20 instrument setups can be saved and recalled from internal non-volatile memory. 10 can be user protected.
Auxiliary Menu:	Gives access to additional functions
Display:	10+2 digit LCD with high-luminance backlight

GPIB Interface	
Programmable Functions:	All front panel accessible functions
Compatibility:	IEEE 488.2-1987, SCPI
Interface Functions:	1991.0 SH1, AH1, T6, L4, SR1, RL1,
Time Stamping: Measurement Rate*	DC1, DT1, E2
Via GPIB To Internal Memory:	250 readings/s 8k readings/s
Internal Memory Size*	Up to 6100 readings
Data Output:	ASCII, IEEE double precision floating point

TimeView ${ }^{\text {TM }}$ Time \& Frequency Analysis Software
TimeView runs on an IBM PC/AT or compatible with VGA monitor.

Data Capture Modes and Measurement Rate*

Free Running Measurement: 8k readings/s
Repetitive Sampling:
Continuous Single-Period:
Waveform Capture:
Data Analysis Features:
Up to 10 MHz
Up to 40k readings/s (200 ns resolution) Yes
Measurement data vs time

FFT Graph
Root Allan Variance
Smoothing function
Zoom function
Cursor measurements
Distribution Histogram
Setup and Measurement Data
Archive and printing

* Depending on measurement function and internal data format

Systematic Uncertainties

Trigger Level Timing Error

Time Interval, Rise/Fall Time, Pulse Width, Duty Factor (x1):
Trigger Level Timing Error =
$=$ TLU x $(1 / S x+1 / S y) \pm 0.5 \times$ Hyst. $x(1 / S x+1 / S y)$ Where:
$S x=$ Slew rate at start trigger point in V/s
$S y=$ Slew rate at stop trigger point in V/s
TLU = Trigger Level Uncertainty in Volt
Hyst. $=$ Hysteresis Window in Volt
Hyst. $=0$ for Time Interval and Rise/Fall Time
Phase, sinewave signals and trigger levels OV (x1):
Trigger Level Timing Error $=$
$=[0.2 / \mathrm{V} \mathrm{pk}$ of $\mathrm{A}+0.2 / \mathrm{V} \mathrm{pk}$ of B] Where:

V pk $(\mathrm{A})=$ Input A peak voltage in Volt
V pk $(\mathrm{B})=$ Input B peak voltage in Volt

Measurement Uncertainties

Measuring Function	Random Uncertainty rms	Systematic Uncertainty
Time Interval Pulse Width Rise/Fall Time	$\frac{\sqrt{(\mathrm{QE})^{2}+\left(\text { Start Trigger Error) }{ }^{2}+(\text { Stop Trigger Error) }\right.}{ }^{2}}{\sqrt{\mathrm{~N}}}$ or min.: 1 ps	\pm Trigger Level Timing Error $\pm 500 \mathrm{ps}$ Systematic Error \pm Time Base Error x Time Interval
Frequency Period	$\frac{\sqrt{(Q E)^{2}+2 \times(\text { Start Trigger Error) }}}{}{ }^{2}$ Measuring Time Frequency or Period	\pm Time Base Error x Freq. or Period \pm QE x Freq. or Period Measuring Time
Ratio $\mathrm{f}_{1} / \mathrm{f}_{2}$	$\frac{\left.\sqrt{(\text { Prescaler Factor })^{2}+2 \times\left(\mathrm{f}_{1} \times \text { Start Trigger Error of } \mathrm{f}_{2}\right.}\right)^{2}}{\mathrm{f}_{2} \times \text { Measuring Time }}$	
Phase	$\frac{\sqrt{(Q E)^{2}+(\text { Start Trigger Error })^{2} \mp(\text { Stop Trigger Error })^{2}}}{\sqrt{ } \mathrm{~N}} \text { x Freq. } \times 360^{\circ}$ or min.: 1 ps x Freq. x 360	\pm Trigger Level Timing Error ± 500 ps Sys. Error x Freq. x 360°
Duty Factor		\pm Trigger Level Timing Error x Freq. ± 500 ps Sys. Error x Freq.

Table 1: Measurement Uncertainties

Random Uncertainties

(QE) Quantization Error

$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$:	50 ps rms
0 to $10^{\circ} \mathrm{C}$ and	
40 to $50^{\circ} \mathrm{C}$:	75 ps rms

(N) Number of samples

Frequency $<12 \mathrm{kHz}$: Measuring Time x Frequency/2
Frequency $>12 \mathrm{kHz}$: Measuring Time x 6000

Start/Stop Trigger Errors:
$\frac{\sqrt{(\text { Vnoise-input })^{2}+(\text { Vnoise-signal }}{ }^{2}}{\text { Signal slew rate (V/s) at trigger point }} \mathrm{rms}$
Vnoise-input: $100 \mu \mathrm{~V}$ rms typical

Display Resolution

LSD Displayed

Unit value of the least significant digit displayed. All calculated LSDs
should be rounded to the nearest decade (e.g. 0.3 Hz is rounded to $0.1 \mathrm{~Hz}, 5 \mathrm{~Hz}$ is rounded to 10 Hz .) and cannot exceed the 12th digit.

Frequency and Period

LSD Displayed
$\frac{50 \mathrm{ps} \times \text { Frequency or Period }}{\text { measuring time }}$
Time Interval, RT, FT, PW
LSD Displayed

$\frac{50 \mathrm{ps}}{\sqrt{\mathrm{N}}}$
 $\sqrt{\mathrm{N}}$

Duty Factor

LSD Displayed
1×10^{-6}

Phase
LSD Displayed 0.01°

Ratio $\mathbf{f 1} / \mathbf{f} \mathbf{2}$

LSD Displayed

Prescaler Factor $\mathrm{f}_{2} \mathrm{x}$ measuring time

Time Base Options

Option model:	PM6681/-1-	PM6681/-5-	PM6681/-6-	PM6681/-7-
Retro-fittable option: Time base type:	non retrofit. Standard	$\begin{aligned} & \text { PM9691/011 } \\ & \text { OCXO } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { PM9692/011 } \\ \text { OCXO } \\ \hline \end{array}$	non retro-fit. Rubidium
Uncertainty due to: Calibration adjustment tolerance, at $+23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	$<1 \times 10^{-6}$	$<2 \times 10^{-8}$	$<5 \times 10^{-9}$	$<5 \times 10^{-11}$
Ageing:per 24 hr per month per year	n.a. $<5 \times 10^{-7}$ $<5 \times 10^{-6}$	$\begin{aligned} & <5 \times 10^{-10} \\ & <1 \times 10^{-8} \\ & <7.5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-10} \\ & <3 \times 10^{-9} \\ & <2 \times 10^{-8} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & <5 \times 10^{-11} \\ & <2 \times 10^{-10} \text { (3) } \end{aligned}$
Temperature variation: $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$, $20^{\circ} \mathrm{C}-26^{\circ} \mathrm{C}$ (typ. values)	$\begin{aligned} & <1 \times 10^{-5} \\ & <3 \times 10^{-6} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-9} \\ & <6 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-9} \\ & <4 \times 10^{-10} \end{aligned}$	$\begin{aligned} & <3 \times 10^{-10} \\ & <2 \times 10^{-11} \end{aligned}$
Power voltage variation: $\pm 10 \%$	$<1 \times 10^{-8}$	$<5 \times 10^{-10}$	$<5 \times 10^{-10}$	$<1 \times 10^{-11}$
$\begin{array}{ll}\text { Short term stability: } & \tau=1 \mathrm{~s} \\ \text { (Root Allan Variance) } & \tau=10 \mathrm{~s} \\ \text { (typical values) } & \tau=100 \mathrm{~s}\end{array}$	not specified	$\begin{aligned} & <5 \times 10^{-12} \\ & <5 \times 10^{-12} \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & <5 \times 10^{-12} \\ & <5 \times 10^{-12} \\ & \text { n.a. } \end{aligned}$	$\begin{aligned} & <5 \times 10^{-11} \\ & <1.5 \times 10^{-11} \\ & <5 \times 10^{-12} \end{aligned}$
Power-on stability: Deviation versus final value after 24 hr on time, after a warm-up time of:	$\begin{aligned} & \text { n.a. } \\ & 30 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-8} \\ & 10 \mathrm{~min} \end{aligned}$	$\begin{aligned} & <5 \times 10^{-9} \\ & 10 \mathrm{~min} \\ & \hline \end{aligned}$	$\begin{aligned} & <4 \times 10^{-10} \\ & 10 \mathrm{~min} \end{aligned}$
Total uncertainty, for operating temperature $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: 1 year after calibration 2 years after calibration	$\begin{aligned} & <1.2 \times 10^{-5} \\ & <1.5 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <7 \times 10^{-10} \\ & <9 \times 10^{-10} \end{aligned}$
Typical total uncertainty, for operating temperature $20^{\circ} \mathrm{C}$ to $26^{\circ} \mathrm{C}$, at $2 \sigma(95 \%)$ confidence interval: 1 year after calibration 2 years after calibration	$\begin{aligned} & <7 \times 10^{-6} \\ & <1.2 \times 10^{-5} \end{aligned}$	$\begin{aligned} & <1 \times 10^{-7} \\ & <2 \times 10^{-7} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-8} \\ & <5 \times 10^{-8} \end{aligned}$	$\begin{aligned} & <2.5 \times 10^{-10} \\ & <5 \times 10^{-10} \end{aligned}$

Not discernible, neglectable versus $1^{\circ} \mathrm{C}$ temperature variation.
n.a. 1 After 48 hours of continuous operation, PM9692 typical value $1 \times 10^{-10} / 24 \mathrm{~h}$
2 Atter 1 month of continuous operation
3 3 Tpical value

Explanation
Calibration Adjustment Tolerance is the maximal tolerated deviation from the true 10 MHz frequency after a calibration. When the reference frequency does not exceed the tolerance limits at the moment of calibration, an adjustment is not needed.
Total uncertainty is the total possible deviation from the true 10 MHz value under influence of frequency drift due to ageing and ambient temperature variations versus the reference temperature. The operating temperature range and the calibration interval are part of this specification.

General Specifications

Environmental Data

Operating Temp
Storage Temp :
Vibration:
Shock:
Reliability:
Safety:

EMC:
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
3G at 55 Hz per MIL-T-28800D
Half-sine 40G per MIL-T-28800D.
Bench handling. Shipping container.
MTBF 30000 h (calculated)
IEC 1010 Class 1, CSA 22.2 No
231, EN 61010-1

EN 55011 ISM Group 1, Class B; EN 50082-2; FCC Part 15J Class A

Power Requirements

90 V rms to 265 V rms, 45 Hz to $440 \mathrm{~Hz}, 35 \mathrm{~W}$
100 W during warm-up (5 min .), 47 W during normal operation (PM 6681R)

Dimensions and Weight

Height: Depth: Weight, Weight PM 668 Ordering

PM 6681/016

315 mm (12.4 in),
86 mm (3.4 in), 395 mm (15.6 in) Net $4 \mathrm{~kg}(8.5 \mathrm{lb})$, Shipping $7 \mathrm{~kg}(15 \mathrm{lb})$
Net $4.8 \mathrm{~kg}(10.5 \mathrm{lb})$, Shipping $7.8 \mathrm{~kg}(16.8 \mathrm{lb})$

Rubidium Reference Basic Model

300 MHz Frequency Reference/ Counter/Calibrator including GPIB-interface and 'TimeView' Time \& Frequency Analysis Software for DOS

Included with Instrument

One year product warranty, line cord and Certificate of Calibration Practices, Operators' Manuals on CD-ROM, Getting Started booklet

Input Frequency Options (PM 6681, PM 6681R)	
PM 6681/6_-	2.7 GHz Input C (PM 9624)
PM 6681/7	8 GHz Input C (PM 9638)

Time Base Options (PM 6681)
PM 6681/_ 5 _
Very High Stability Oven Time
PM 6681/_ 6 _ Base (PM 9691
PM 6681/_ $6_{-} \quad$ Ultra High Stability Oven Time Base

Example Ordering Configuration

To order the PM $6681300 \mathrm{MHz}, 50 \mathrm{ps}$ version with the 2.7 GHz input C and Standard Time Base, select the complete Model Number: PM 6681/616

Options and Accessories

PM 9611/80
PM 9624
PM 9638
PM 9691
PM 9692
PM 9622/00
PM 9627
PM 9627H
PM 9639
TimeView-81W

Rear Panel Inputs
(front inputs disconnected)
2.7 GHz Input C

8 GHz Input C
Very High Stability Oven Time Base Ultra High Stability Oven Time Base Rack-Mount Kit
Carrying Case
Heavy Duty Alumium Carrying Case 2.3 GHz 500 Ω probe 10:1 (BNC) Time and Frequency Analysis Software for Windows ${ }^{\text {¹ }}$

When ordered together with the basic counter, options are factory installed.
Options ordered separately can be customer retrofitted, except
PM 9611/80 Rear Panel Inputs.
SW Drivers on request
MET/CAL procedures are available
HPVEE driver is available
LabView driver is available from National Instruments

Manuals on CD-ROM

Operator *
Programming*
Getting Started in English, French and German
*No charge with purchase of unit

Factory Warranty

One year product warranty
Two year warranty on Rubidium Reference Sytem, Lifetime Limited
Warranty on the Rubidium Lamp

Fluke Corporation

P.O. Box 9090, Everett, WA 98206

Fluke Europe B.V.

P.O. Box 1186,

5602 BD Eindhoven,
The Netherlands

For more information call:
In the U.S.A.: (800) 443-5853
or Fax: +1 (425) 446-5116
In Europe/M-East:
+31 (0)40 2675200
or Fax: +31 (0)40 2675222
In Canada: (905) 890-7600
or Fax: (905) 890-6866
From other countries:
+1 (425) 446-5500
or Fax: +1 (425) 446-5116
Web access: http://www.fluke.com

