Table 1-1. 8085 Interface Pod Specifications **ELECTRICAL PERFORMANCE** Power Dissipation 3.0 watts maximum **Electrical Protection** CLOCK INPUTS -0.5 to +7 volts may be applied between ground and any ribbon cable plug pin continuously cable plug pin continuously as long as the pod is powered by the troubleshooter. OTHER INPUTS-7 to +12 volts may be applied between ground and any ribbon cable plug pin continuously as long as the pod is powered by the troubleshooter. MICROPROCESSOR SIGNALS Input Low Voltage 0V min., +0.8V max. Input High Voltage +2.0V min., +5.0V max. Output Low Voltage $\dots +0.45$ V max. with IoI = 2.0 mA Output High Voltage $\pm 2.4 \text{V}$ min. with Ioh = $\pm 400 \,\mu\text{A}$ Tristate Output Leakage Current $\pm 20~\mu$ A High Level Input Current 20 μ A typ. with Vih = ± 2.7 V Low Level Input Current READY, TRAP, HOLD, RESET IN -400 μ A max. with ViI = +0.4V ALL OTHER INPUT LINES $-20~\mu\text{A}$ typ. with ViI = $\pm 0.4\text{V}$ TIMING CHARACTERISTICS Maximum Clock Frequency . . 5.0 MHz typ. Added Delays to 8085 Signals LOW-TO-HIGH TRANSITIONS 20 ns typ. HIGH-TO-LOW TRANSITIONS 24 ns typ. ## Table 1-1. 8085 Interface Pod Specifications (cont) ## **UUT POWER DETECTION** Detection of Low Vcc Fault .. $Vcc \le \pm 4.5 V$ detected Detection of High Vcc Fault $\,$. Vbb > -5.5V detected GENERAL (1.3 in High x 4.0 in Wide x 7.4 in Deep) Weight 0.68 kg (1.5 lbs) **Environment** STORAGE -40° to +70°C, RH < 95% OPERATING 0° to +25°C, RH < 95% $\pm 25^{\circ}$ to $\pm 40^{\circ}$ C, RH $\leq 75\%$ $\pm 40^{\circ}$ to $\pm 50^{\circ}$ C, RH < 45%