Chapter 3 Characteristics

The following specifications apply at the nominal line voltage ±10% and at a temperature of 25°C (77°F) unless otherwise stated.

3.1A Power Amplifier

- 1. Compliance Voltage: > ±100 V
- 2. Maximum Output Current: $> \pm 1.0 \text{ A}$
- 3. Slew Rate: 10 V/ μ s (high speed)
- 4. Bandwidth, Open Loop, Unity Gain: >2.5 MHz
- 5. Voltage Temperature Stability: $<50 \,\mu\text{V/}^{\circ}\text{C}$

3.1B Differential Electrometer

- 1. Input Impedance: $>10^{10}\Omega$ in parallel with <50 pF
- 2. Input Bias Current: <20 pA at 25°C
- Maximum Input Voltage
 Differential: ±10 V
 Reference Input: ±11 V
- 4. Common Mode Rejection >80 dB from dc to 1 kHz >40 dB at 100 kHz
- 5. Bandwidth
 Small Signal: >4 MHz
 Full Signal: >400 kHz
- 6. Offset Voltage: $<10 \,\mu\text{V}$
- 7. Offset Temperature Stability: $<10 \,\mu\text{V}/^{\circ}\text{C}$

3.1C Current Measurement

- 1. Ranges: 8 decades, 1 A to 100 nA
- Accuracy (dc) at Monitor
 10 μA to 1 A: Better than 0.2% of range
 100 nA and 1 μA Ranges: Better than 0.5% of range ±5 nA max (±1 nA typical)
- 3. Frequency Response (small signal) 1 mA Range: -3 dB at >1 MHz, 1 k Ω source impedance 10 μ A Range: -3 dB at >75 kHz, 100 k Ω source impedance

3.1D Potential/Current

1. Digital/Analog Converters (DAC's)

Bias DAC

Resolution: 14 bits

Range: ±8 V (potentiostat)

±200% of full-scale current

(galvanostat)

Modulation DAC

Resolution: 14 bits

Range (Poten.): ± 2 V, ± 0.2 V, and ± 0.02 V Range (Galvan.): $\pm 200\%$, $\pm 20.00\%$, and $\pm 2.000\%$ of full-scale current.

2. Accuracy

Applied Potential: 0.2% of reading ±2 mV Applied Current: 0.2% of full-scale current

3.1E IR Compensation

1. Positive Feedback

Digitally Controlled Range: 1/Current Range (0 to 2 times the Current Range Resistor)
Resolution: 0.05% of Current Range Resistor

2. Current Interrupt

Digital Potential Error Correction: 12 bit DAC Total Interruption Time: $<200 \mu s$ Switching Time, ON/OFF: $<1 \mu s$ (1 k Ω resistive cell)

3.1F System

- 1. Rise Time (10% to 90% on high-speed setting)
 No Load: <750 ns
 1 Ω, 1 A: <3 μs
 10 kΩ, 100 μA: <2 μs
- 2. Noise and Ripple: typically <25 μ V rms referred to external input

3.1G Computer interfaces

- 1. RS-232C
- 2. IEEE-488 (GPIB)

The instrument recognizes more than 100 different commands for control from a remote computer via the IEEE-488 or RS-232C interface. The *Model 273A Remote-Programming Command Handbook* describes these commands and provides detailed explanations of GPIB and RS-232C communications, including rear-panel switch settings and communications protocols.