SPECIFICATIONS

DC Voltage (DC V)

Ranges

Range	Sampling SLOW / MID2 / MID1		Sampling FAST		Input Resistance	Max. Input (Hi-Lo)
	Max. Reading	Resolution	Max. Reading	Resolution		
200 mV	199.999	$1 \mu \mathrm{~V}$	199.99	$10 \mu \mathrm{~V}$	>1 G Ω	$\begin{aligned} & \pm 1000 \mathrm{~V} \text { PEAK (10s) } \\ & \pm 500 \mathrm{~V} \text { PEAK } \\ & \text { (continuously) } \end{aligned}$
2000 mV	1999.99	$10 \mu \mathrm{~V}$	1999.9	$100 \mu \mathrm{~V}$		
20 V	19.9999	$100 \mu \mathrm{~V}$	19.999	1 mV	$\begin{aligned} & 10 \mathrm{M} \Omega \\ & \pm 1 \% \end{aligned}$	± 1000 V PEAK (continuously)
200 V	199.999	1 mV	199.99	10 mV		
1000 V	1000.00	10 mV	1000.0	100 mV		

- Accuracy (Sampling SLOW) : $\pm(\%$ of reading + digits)

Range	$\mathbf{2 4 h}, \mathbf{2 3} \pm \mathbf{1}^{\circ} \mathbf{C}$	$\mathbf{9 0 d a y s}, \mathbf{2 3} \pm \mathbf{5}^{\circ} \mathbf{C}$	$\mathbf{1}$ year, $\mathbf{2 3} \pm \mathbf{5}^{\circ} \mathbf{C}$	Temperature Coefficient $\left(\mathbf{5}\right.$ to $\mathbf{1 8}, \mathbf{2}$ to $\left.\mathbf{0} 0^{\circ} \mathrm{C}\right)$
200 mV	$0.0055+6(6)$	$0.009+8(6)$	$0.012+8(6)$	$0.0011+1 \quad(0.4)$
2000 mV	$0.0045+3(5)$	$0.006+3(5)$	$0.009+3(5)$	$0.0009+0.5(0.3)$
20 V	$0.007+4(6)$	$0.0012+4(6)$	$0.02+4(6)$	$0.0012+0.5(0.3)$
200 V	$0.006+3(5)$	$0.011+3(5)$	$0.019+3(5)$	$0.0012+0.5(0.3)$
1000 V	$0.008+3(5)$	$0.013+3(5)$	$0.021+3(5)$	$0.0015+0.5(0.3)$

* The $24 \mathrm{~h}, 23 \pm 1^{\circ} \mathrm{C}$ accuracy is the value with respect to the calibration standard

The NULL function is used

* When sampling MID2 is used, 1 is added to the value of digits of SLOW.
* When sampling MID1 is used, 3 is added to the value of digits of SLOW.
* The number in parentheses is the value of digits in the case of sampling FAST.
* Common mode rejection ratio: 120 dB or better
* (Value at sampling SLOW/MID2/MID1, 50/60 Hz $\pm 0.1 \%, \mathrm{Rs}=1 \mathrm{k} \Omega$)
* Normal mode rejection ratio: 60 dB or better
/60 Hz+0.1\%)
* Maximum allowable voltage between Lo and the case: ± 500 V PEAK

DC Current (DC A)

Ranges					
Range	Sampling SLOW / MID2 / MID1		Sampling FAST		Input Resistance
	Max. Reading	Resolution	Max. Reading	Resolution	
$2000 \mu \mathrm{~A}$	1999.99	10 nA	1999.9	100 nA	$<11 \Omega$
20 mA	19.9999	100 nA	19.999	$1 \mu \mathrm{~A}$	$<11 \Omega$
200 mA	199.999	$1 \mu \mathrm{~A}$	199.99	$10 \mu \mathrm{~A}$	$<0.3 \Omega$
2000 mA	1999.99	$10 \mu \mathrm{~A}$	1999.9	$100 \mu \mathrm{~A}$	$<0.3 \Omega$

- Accuracy (Sampling SLOW) : $\pm(\%$ of reading + digits)

Range	$\mathbf{1}$ year, $\mathbf{2 3} \pm \mathbf{5}^{\circ} \mathbf{C}$
$2000 \mu \mathrm{~A}$	$0.06+100(100)$
20 mA	$0.06+20(20)$
200 mA	$0.12+80(20)$
2000 mA	$0.12+40(40)$

* When sampling MID2 is used, 10 is added to the value of digits of SLOW
* When sampling MID1 is used, 20 is added to the value of digits of SLOW.
* The number in parentheses is the value of digits in the case of sampling FAST.
* Temperature coefficient: $\pm(1 / 10$ of measurement accuracy $) /{ }^{\circ} \mathrm{C}$
* Allowable current: 2 A (built-in 2 A fuse)
- When current clamp (751106) is used

Range	Max. Reading	Resolution	Accuracy $: \pm(\%$ of reading + digits)
200 V	199.9	100 mA	$2+10(\leq 150 \mathrm{~A})$
			$2.5+10(>150 \mathrm{~A})$

* The accuracy is the value over one year, at $23 \pm 5^{\circ} \mathrm{C}$, after zero adjustment.
* Temperature coefficient: $\pm(1 / 10$ of measurement accuracy $) /{ }^{\circ} \mathrm{C}$

Resistance (OHM)

- Ranges

Range	Sampling SLOW / MID2 / MID1		Sampling FAST		Current Through Unknown
	Max. Reading	Resolution	Max. Reading	Resolution	109.99
200Ω	199.999	$1 \mathrm{~m} \Omega$	109	1 mA	
2000Ω	1999.99	$10 \mathrm{~m} \Omega$	1999.9	$100 \mathrm{~m} \Omega$	1 mA
$20 \mathrm{k} \Omega$	19.9999	$100 \mathrm{~m} \Omega$	19.999	1Ω	100
$200 \mathrm{k} \Omega$	199.999	1Ω	199.99	10Ω	25
$2000 \mathrm{k} \Omega$	1999.99	10Ω	1999.9	100Ω	2.5
$20 \mathrm{MA} \Omega$	19.9999	100Ω	-	-	250
$200 \mathrm{nA} \Omega$	199.99	$10 \mathrm{k} \Omega$			

- Accuracy (4-wire system, Sampling SLOW): $\pm(\%$ of reading + digits)

Range	$\mathbf{2 4} \mathbf{h , 2 3} \pm \mathbf{1}^{\circ} \mathbf{C}$	$\mathbf{9 0}$ days, $\mathbf{2 3} \pm 5^{\circ} \mathbf{C}$	$\mathbf{1}$ year, $\mathbf{2 3} \pm 5^{\circ} \mathbf{C}$	Temperature Coefficient $\left(\mathbf{5}\right.$ to $\mathbf{1 8}, \mathbf{2 8}$ to $\left.\mathbf{4 0}{ }^{\circ} \mathrm{C}\right)$
200Ω	$0.008+6(6)$	$0.015+7(6)$	$0.019+7(6)$	$0.0021+1(1.5)$
2000Ω	$0.007+4(5)$	$0.012+6(5)$	$0.016+6(5)$	$0.0016+1(0.4)$
$20 \mathrm{k} \Omega$	$0.007+3(5)$	$0.012+5(5)$	$0.016+5(5)$	$0.0016+1(0.4)$
$200 \mathrm{k} \Omega$	$0.008+3(5)$	$0.013+5(5)$	$0.017+5(5)$	$0.0016+1(0.4)$
$2000 \mathrm{k} \Omega$	$0.03+15(20)$	$0.05+20(30)$	$0.05+20(30)$	$0.005+1(0.4)$
$20 \mathrm{M} \Omega$	$0.25+30$	$0.25+30$	$0.25+30$	$0.02+3$
$200 \mathrm{M} \Omega$	$2+20$	$2+20$	$2+20$	$0.05+5$

*The $24 \mathrm{~h}, 23 \pm 1^{\circ} \mathrm{C}$ accuracy is the value with respect to the calibration standard.
*The NULL function is used.

* When sampling MID2 is used, 1 is added to the value of digits of SLOW.
* When sampling MID1 is used, 3 is added to the value of digits of SLOW.
* The number in parentheses is the value of digits in the case of sampling FAST.

However, $4 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$ is added to the temperature coefficient.
However, $4 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$ is added to the tem

* Excludes the effect of the lead wires.
* Open temperature voltage: Max. 12.5 V
* Max. input: ± 300 V PEAK (between Hi and Lo, between SENSE Hi and SENSE Lo)
* Response time: Until the reading falls within the specified accuracy
$2000 \mathrm{k} \Omega / 20 \mathrm{M} \Omega$ range Within 0.4 seconds
$200 \mathrm{M} \Omega$ range Within 5 seconds

AC Voltage (AC V)

- Ranges

Range	Sampling SLOW / MID2 / MID1		Input Resistance	$\underset{\text { Max. }}{\text { Input (Hi-Lo })}$
	Max. Reading	Resolution		
200 mV	199.999	$1 \mu \mathrm{~V}$	$1 \mathrm{M} \Omega \pm 2 \%$ Approx. 150 pF	$\begin{aligned} & 700 \mathrm{~V} \mathrm{rms} \\ & \text { or } \\ & \pm 1000 \mathrm{~V} \text { PEAK } \\ & \text { less than } \\ & 10^{7} \mathrm{~V} \cdot \mathrm{~Hz} \end{aligned}$
2000 mV	1999.99	$10 \mu \mathrm{~V}$		
20 V	19.9999	$100 \mu \mathrm{~V}$		
200 V	199.999	1 mV		
700 V	1000.00	10 mV		

- Accuracy (Sampling SLOW): \pm (\% of reading + digits), 1 year, $23 \pm 5^{\circ} \mathrm{C}$

Range	$\mathbf{2 0}$ to $\mathbf{3 0} \mathbf{~ H z}$	$\mathbf{3 0}$ to $\mathbf{4 5} \mathbf{~ H z}$	$\mathbf{4 5} \mathbf{~ H z}$ to $\mathbf{1 0 k H z}$	$\mathbf{1 0}$ to $\mathbf{2 0} \mathbf{~ k H z}$	$\mathbf{2 0}$ to $\mathbf{5 0} \mathbf{~ k H z}$	$\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ k H z}$
200 mV	$0.9+250$	$0.5+250$	$0.4+250$	$0.5+300$	$0.8+500$	$2+500$
2000 mV	$0.8+100$	$0.4+100$	$0.2+100$	$0.4+200$	$0.6+500$	$2+500$
20 V	$0.8+100$	$0.4+100$	$0.2+100$	$0.4+200$	$0.6+500$	$2+500$
200 V	$1+100$	$0.4+100$	$0.3+100$	$0.4+200$	$0.8+500$	$3+500$
700 V	$1+100$	$0.4+100$	$0.4+100$	$0.6+300$		

* When sampling MID2 is used, 10 is added to the value of digits of SLOW.
* When sampling MID1 is used, 20 is added to the value of digits of SLOW
* AC coupling: True RMS value measurement method
* Input range: Sinusoidal waveform of between 5 and 100% of the range
* Response time: Until the reading falls within $\pm 0.2 \%$ of the final value Within 400 ms
* Crest factor: 3 at full scale (For 700 V range: 2 at full scale)
* Temperature coefficient: $\pm(1 / 10$ of the measurement accuracy $) /{ }^{\circ} \mathrm{C}$
* Maximum allowable voltage between Lo and the case: $\pm 500 \mathrm{~V}$ PEAK

AC Current (AC A)

- Ranges

Range	Sampling SLOW / MID2 / MID1		Input Resistance $(\mathbf{5 0 ~ H z})$
	Max. Reading	Resolution	$<11 \Omega$
$2000 \mu \mathrm{~A}$	1999.99	10 nA	$<10 \mathrm{nA}$
20 mA	19.9999	100	$<11 \Omega$
200 mA	199.999	$1 \mu \mathrm{~A}$	$<0.3 \Omega$
2000 mA	1999.99	$10 \mu \mathrm{~A}$	$<0.3 \Omega$

- Accuracy (Sampling SLOW): $\pm\left(\%\right.$ of reading + digits), 1 year, $23 \pm 5^{\circ} \mathrm{C}$

Range	$\mathbf{2 0}$ to $\mathbf{3 0 H z}$	$\mathbf{3 0}$ to $\mathbf{4 5} \mathbf{H z}$	$\mathbf{4 5 H z}$ to $\mathbf{2 k H z}$	$\mathbf{2}$ to $\mathbf{5 k H z}$
$2000 \mu \mathrm{~A}$	$1.5+350$	$0.8+300$	$0.5+300$	$0.8+300$
20 mA	$1.3+300$	$0.8+200$	$0.5+200$	$0.8+200$
200 mA	$1.3+300$	$0.8+300$	$0.5+300$	$0.8+300$
2000 mA	$1.5+300$	$1.5+200$	$1+200$	$1.5+200$

* When sampling MID2 is used, 10 is added to the value of digits of SLOW.
* When sampling MID1 is used, 20 is added to the value of digits of SLOW.
* AC coupling: True RMS value measurement method
* Input: Sinusoidal waveform of between 5 and 100% of the range
* Response time: Until the reading falls within $\pm 0.2 \%$ of the final value Within 400 ms
* Crest factor: 3 at full scale
* Temperature coefficient: $\pm(1 / 10$ of the measurement accuracy $) /{ }^{\circ} \mathrm{C}$
* Maximum allowable current: 2 A (built-in 2 A fuse)
- When current clamp (751106) is used.

Range	Max. Reading	Resolution	Accuracy : \pm (\% of reading + digits)
150 V	150.0	100 mA	$2+10$

* The accuracy is the value over one year, at $23 \pm 5^{\circ} \mathrm{C}$, after zero adjustment. * 40 to 500 Hz
* Temperature coefficient: $\pm\left(1 / 10\right.$ of measurement accuracy) $/{ }^{\circ} \mathrm{C}$

Communication Functions

* RS-232-C interface (standard provision)

Transmission method: Start-stop synchronization
Transmission speed: 75, 150, 300, 600, 1200, 2400, 4800, 9600 bits/s
Handshake mode, baud rate, number of bits, and header can be set to ON or OFF.

* GP-IB interface (option)

Electrical and mechanical specifications:
Conforms to IEEE ST'd 488-1978
(Conforms to IEEE ST'd 488.2-1987)
Functional specifications: SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT1, C0C Address mode, address, and header can be set to ON or OFF.

Sampling

	Sampling Speed	Integrating Time
SLOW	$2 / \mathrm{s}$	200 ms
MID2	$4 / \mathrm{s}$	100 ms
MID1	$20 / \mathrm{s}$	20 or 16.67 ms
FAST	$50 / \mathrm{s}(125 / \mathrm{s})$	2 ms

* When MID1 is used, $20 \mathrm{~ms}(50 \mathrm{~Hz})$ or $16.66 \mathrm{~ms}(60 \mathrm{~Hz})$ is automatically selected according to the supply voltage frequency.
* In the case of AC voltage and AC current measurement, MID1 is activated when FAST is selected. * In the 20 M and $200 \mathrm{M} \Omega$ range, MID2 is activated when FAST or MID1 is selected.

General Specifications

Operating principle: Sample mode: Sampling rate:

Maximum reading:
Over-range information:
Data memory:
Operating temperature: Humidity:
Power requirements:
feedback pulse width modulation method
Auto/Single
Four modes of SLOW, MID2, MID1, and FAST are available.
199999
-oL- sign display
Up to 2000 items of measurement data and also 10 kinds of setup information can be saved.
5 to $40^{\circ} \mathrm{C}$
20 to 80% RH
100 V AC (90 to 110 V AC),
120 V AC (108 to 132 V AC)
$230 \vee \mathrm{AC}$ (207 to $253 \vee \mathrm{AC}$)
50 or 60 Hz

Storage temperature: Power consumption: Warmup Time: Dimensions: Weight:
-5 to $50^{\circ} \mathrm{C}$
20 VA max.
Approx. 60 minutes (until all specifications are satisfied)
Approx. $213(\mathrm{~W}) \times 88(\mathrm{H}) \times 350(\mathrm{D}) \mathrm{mm}$
Approx. 3 kg

Optional Specifications

GP-IB:
Simple scanner:
Maximum tolerable voltage

See Communications Functions above.
Simple scanner: $\quad 8 \mathrm{ch}, 2$-wire (Available for DC voltage measurement only) Maximum tolerable voltage: 30 V between Hi and Lo terminals, 30 V between channels, 250 V peak between $\mathrm{Hi} /$ Lo terminals and the housing
Channel number is displayed on the front panel.
Accuracy:

BCD output:

DA output
Add 20 to the digits value given as the accuracy for the DC voltage measurement when the range is 2000 mV or less.
Add (0.02% of reading +20 digits) to the value given as the accuracy for the DC voltage measurement when the range is 20 V or more.
Data output: BCD parallel output
Output data: measurement data, decimal point, unit, polarity, over-range
Connector: $\quad 50-\mathrm{pin}$ (equivalent to Amphenol 57-40500)
Output voltage range: $\quad-1 \mathrm{~V}$ to $+1 \mathrm{~V} / \mathrm{F} . \mathrm{S}$.
Corresponding reading: any three contiguous digits (or 3 1/2-digits in the case of "1999") of the displayed data
Standard operating condition
Humidity:

$50 \pm 10 \% \mathrm{RH}$

Power supply voltage 100 V AC $\pm 1 \%$

Standard Accessories

Power supply cord : 1 piece
Measurement lead : 1 piece
Fuse 2A (FAST) : 1 piece
Remote connector : 1 piece
Instruction manual : 1 copy

