Network Analyzers ## For Evaluation and Inspection of Digital Communication Devices ### R3766H/3767H Series ■ Measurement frequency range 40MHz to 8.0GHz R3766H/3767H Series ■ Three models available for all types of applications Type A: Basic Model Type B: Built In SWR Bridge Model Type C: Built In S-parameter Test Set Model ■ High sweep speed 0.15ms/point(with normalized calibration) 0.25ms/point(with 2-port full calibration) ■ 4-channel, 8-trace high-performance display ■ 100 dB dynamic range measurement (Photo is R3767CH) # R3766H/3767H series Network Analyzers Recent years have seen a great progress in digital information and communication equipment such as PDC/PHS digital mobile radio equipment and communication equipment for ISDN. Accordingly, requirements for dielectric filters, SAW filters, layer-built filters, antennas, isolators, power amplifiers, and other high-frequency electronic devices used in communication equipment are becoming more severe and stricter: higher frequency, smaller sizes, lower power consumption, and so on. The R3766H/3767H series is a vector network analyzers which can measure the amplitude, phase, group delay time and impedance of high-frequency electronic devices with high precision and high speed. The series comes in three different models with measurement frequency ranges: 40MHz to 8.0GHz. In addition, the use of newly developed high-speed signal processing architecture realizes high speed measurement of 0.15ms/point (at normalized calibration) or 0.25ms/point (at 2-port full calibration) with 10 kHz resolution bandwidth. One of the major advantages of the series is that it helps you choose the model which best suits your application. The R3766H/3767H using a 7.8-inch large TFT color LCD is suitable both for line and engineering use. Each series comes in three different models including type A (basic model), type B (model with a built-in SWR bridge) and type C (model with a built-in S-parameter test set). ### ■ Programmed Sweep Realizes High-Speed and High-Resolution Measurement The R3764H/3765H/3766H/3767H series is provided with the programmed sweep function as standard which makes it possible to vary output power and resolution bandwidth (RBW) during sweep. In evaluation of filter characteristics for instance, measurement with high speed, high accuracy and high reproducibility can be realized by varying resolution bandwidth and output power in pass or stop band. ### ■ Limit Line Function for Adjustment and Test The limit line function performs PASS/FAIL test based on the judgment value set by the limit line editor and then displays the test result. In addition, the color of limit lines and waveform data can be specified for each judgment area, allowing the user to make PASS/FAIL judgment at a glance during judgement on the screen. In POLAR and Smith chart measurement, the series has the ability to make limit judgement both for amplitude/phase adjustment for specified frequency ranges and automatic test result judgement. ### **Improved H Series Performance Items** - Manually selectable display colors (256 colors) - Expanded BASIC programming memory capacity (1MB) - Expanded save register capacity (2MB) - Improved BASIC processing speed - CDMA IF filter analysis function integrated - New 3-port device calibration function ### R3766H/3767H Series ## ■ Series for system use 32-line-by-8-character fluorescent character display R3766AH/BH/CH (8.0GHz) ### ■ Series for stand-alone use 7.8-inch TFT color LCD R3767AH/BH/CH (8.0GHz) | | | Application | | | | | | |---|---|--------------|----------------|----------|-----------------|------------------------------|---| | Product type | Advantages | Unipolar BPF | Multipolar BPF | Duplexer | Power amplifier | 2-piece parallel measurement | Representative process lines | | A type
General-purpose model
R3766AH, R3767AH | Test set connectable | | | 0 | 0 | 0 | Preprocess: Dielectric filter Duplexer SAW filter, etc. | | | | | | | | | Inspection line: Power amplifier | | B type
IZI measurement
low-cost model
R3766BH, R3767BH | Bridge integrated
Transmission/reflection
simultaneous measurement | 0 | | | | | Intermediate process: Dielectric filter Duplexer Mobile telephone antenna Inspection line: Mobile telephone antenna | | C type
S parameter full
measurement model
R3766CH, R3767CH | S parameter test set integrated
Forward/reverse direction
measurement | | 0 | | | | Inspection line: Dielectric filter SAW filter, cable. Circulator Isolator Technical development | For R3766H/3767H, 3 types are prepared so that you can select the one which best matches your application. Basic Model R3766AH/3767AH With a built-in signal separator and two inputs, type A can perform simultaneous measurement for two devices. By connecting the S-parameter test set, it can measure 2port devices; with the optional duplexer test set, it can measure a duplexer with three ports (ANT, RX, and TX terminals) which is used at the front section of mobile radio equipment. When the optional power amplifier test set is connected and a voltage & current generator (VIG) is used together, it can perform measurement on the power amplifier in portable phones. (In this case, however, extended network analyzer functions must be installed.) Built-In SWR Bridge Model for [Z] measurement R3766BH/3767BH Type B incorporates a power splitter and a SWR bridge, allowing transmission and reflection characteristics to be measured efficiently at the same time. In addition, by executing 1-port calibration, measurement with higher accuracy is possible. Built-In S-Parameter Test Set Model R3766CH/3767CH Type C incorporates the S-parameter test set mounting two SWR bridges, a power splitter and a semiconductor switch for forward/reverse switching. It can measure forward characteristics (S11 and S21) and reverse charac- (S11 and S21) and reverse characteristics (S22 and S12) with high accuracy in auto-reversing mode By connecting the optional duplexer test adapter, it can measure a duplexer with three ports. # **Network Analyzers** # For Evaluation and Inspection of Digital Communication Devices ### R3766H/3767H Series ### **■** High Throughput Cuts Test Cost In production lines of electronic devices, reduction of test cost is an essential issue. The R3766H/3767H series realizes the highest throughput in its class. # ■ High throughput with high speed sweep ### 0.15ms/point (with 10kHz resolution bandwidth and normalized calculation) **0.25ms/point** (with 10kHz resolution bandwidth and 2-port full calculation) ### ■ Shortens data transfer time to 1/4 In highly automated production lines of electronic parts, the time necessary to transmit to/receive from external computers affects the overall system thoughput. The R3766H/3767H series uses direct memory access (DMA) together with dual port memory, reducing the data transfer time to 1/4 (in in-house comparison). For example, it takes only 60 ms (typ.) to perform data transmission for 1201 points, i.e. a transmission speed of 50 μs or less per point is realized. ### ■ Reduces instrument setup time to 1/2 In parts test, a variety of items are tested and therefore the setup time is essential. With the R3766H/3767H series, software algorithm is remarkably improved and the setup time is reduced to 1/2 (in in-house comparison). For example, the sum of the recall time and single sweep time at 2-port full calibration (with 1kHz resolution) is only 1.5 seconds. ### ■ 100 dB Dynamic Range for Filter Test For ripple evaluation in pass band and spurious check in stop band as is the case with dielectric filters, measurement with a wide dynamic range is crucial. The R3766H/3767H series realizes 100 dB dynamic range with 10 Hz resolution bandwidth, making it suitable for testing of high-attenuation devices used in base stations of portable phones. ### **■ CDMA IF Filter Analysis Function** The H series network analyzers can now accurately and efficiently measure the SAW filter characteristics of the CDMA system. ### 1. Gate function This removes the effects of multiple reflections in the SAW device for measuring the characteristics of the SAW waves alone. ### 2. Phase linearity This implements real-time analysis of phase linearity. For instance, changes in phase linearity by gate on/off can be analyzed simultaneously on a multiple-window display. ## 3. Time domain analysis (option) The propagation characteristics of the SAW device can be analyzed on the time axis. The time and frequency axes can be displayed simultaneously also. # ■ Powerful 4-Channel/8-Trace Function with Simultaneous Display The R3767H series is provided with the 4-channel/8-trace function and simultaneous display is possible. For example, when a 3-port test adapter is connected to the R3767CH, simultaneous and realtime measurement of Tx/Rx characteristics of the duplexer is possible. Channels 1 and 3 measure four S-parameters of Tx and channels 2 and 4 measure those of Rx at the same time with a throughput of approx. 250 ms (with 201 points and 2-port full calibration). In addition, limit lines and multi maker function can be used for each of the four screens. ### R3766H/3767H Series #### **Dielectric Filter Measurement** ### **■** For Preprocess This processes dielectric material into original component and then adjusts the specified resonance frequency, using transmission/reflection method. In this stage, a low-price network analyzer with high speed and automatic measurement function is required. The R3764AH/3764BH model is recommended which is for system use and of low-priced type. ### **■** For Intermediate Process This process assembles adjusted original component of dielectric material, processes into the form of filters and then implements filter characteristics. In general, there are two types of adjustment methods: single directional and bi-directional methods. Adjustment is made while monitoring frequency characteristics by means of display waveform. In this stage, TFT color LCD with tilt mechanism and better working environment are required. For this purpose, it is necessary to reduce the depth of the work area by 10 cm. In addition, the limit line function is required to make PASS/FAIL test at a glance in realtime. The R3765BH/3765CH model with a built-in SWR bridge and S-parameter test set for standalone use is recommended. #### **■** For Test Process This process performs total characteristics test of molded and completed filters including spurious measurement. This process has been made automatic to some extent. However, waveform observation by the human eyes is required as the final check. Because the process requires a wide range of measurement including spurious measurement, the highest R3767CH model of 8 GHz stand-alone type is recommended. # **Network Analyzers** # For Evaluation and Inspection of Digital Communication Devices # R3766H/3767H Series | N | leasuren | ant | Functi | one | |---|----------|-----|--------|-----| | | | | | | | Measurement Function | 13 | | | | |-------------------------|--|-------------------------|--------------------|--| | Sweep channel | 2 channel (CH 1 and CH 2) | | | | | Display channel | 4 channel (CH 1, and CH 2 , CH 3 , and CH 4) | | | | | Trace | 2 traces/channel | | | | | Display parameter | TypeA | ТуреВ | TypeC | | | | | Transmission | S11, S21, S22, S12 | | | | A/R, B/R | Reflection | S21&S11, | | | | | Transmission& | S12&S22 | | | | | reflection | | | | Format | | | | | | Rectangular coordinates | Log/linear amplitude, phase, and group delay or real part + | | | | | | imaginary part of com | plex parameter | | | | | Z , R, X (at measurem | nent with impedance co | nversion) | | | | Y , G, B (at measuren | nent with admittance co | nversion) | | | | Phase extension display function | | | | | Smith chart | Maker reading : Log/linear amplitude, phase, real part + | | | | | (R3767H only) | imaginary part, R + jX | , G + jB | | | | Polar coordinates | The second secon | | | | | (R3767H only) | imaginary part | | | | ### Receiver Characteristics | Resolution bandwidth | 10 kHz to 10 Hz (in 1 or 3 steps) | | | | |--|---|--|--|--| | Amplitude characteristics | | | | | | Amplitude resolution | 0.001 dB | | | | | Dynamic accuracy | With respect to -20 dE | B below maximum input level of | | | | | test port | | | | | | | ±0.3 dB (40 MHz ≤ f ≤ 3.8 GHz) | | | | | 0 to -10 dB | $\pm 0.8 \text{ dB } (3.8 \text{ MHz} \le f \le 8.0 \text{ GHz})$ | | | | | | $\pm 0.05 \text{ dB (40 MHz} \le f \le 3.8 \text{ GHz)}$ | | | | | -10 to -20 dB | $\pm 0.2 \text{ dB } (3.8 \text{ MHz} \le f \le 8.0 \text{ GHz})$ | | | | | -20 to -50 dB | ±0.05 dB | | | | | -50 to -60 dB | ±0.10 dB | | | | | -60 to -70 dB | ±0.15 dB | | | | | -70 to -80 dB | ±0.40 dB | | | | | -80 to 90 dB | ±1.00 dB | | | | Eroguanov oborgotoriotico | | | | | | Phase characteristics Phase characteristics | 1.0 dB (-10 dBm, 25°0 |) ±0°() | | | | | 11000 /Diaplay for 11 | 80° or more is possible by means | | | | Measurement range | | | | | | Phase resolution | of display extension function) | | | | | Frequency characteristics | 0.01° | | | | | Dynamic accuracy | ±5° (-10 dBm, 25°C ±5°C) | | | | | | With respect to -20 dB below maximum input level of test port | | | | | | 0 to -10 dB | ±5.0° | | | | | -10 to -20 dB | ±0.3° (40 MHz ≤ f ≤ 3.8 GHz) | | | | | | $\pm 0.8^{\circ}$ (3.8 GHz \leq f \leq 8.0 GHz) | | | | | -20 to -50 dB | ±0.3° | | | | | -50 to 60 dB | $\pm 0.4^{\circ}$ (40 MHz \leq f \leq 3.8 GHz) | | | | | | $\pm 0.8^{\circ}$ (3.8 GHz \leq f \leq 8.0 GHz) | | | | | -60 to -70 dB | ±1.5° | | | | | -70 to -80 dB | ±4.0° | | | | | -80 to 90 dB | ±8.0° | | | | Group delay time characteristics | Calculated by the follo | wing expression : | | | | Range | | Λø: Phase | | | | | $r = \frac{\Delta \emptyset}{360 \times Af}$ | Δ f : Aperture frequency (Hz) | | | | | 300 × Δ1 | _ , , , , , , , , , , , , , , , , , , , | | | | | | | | | | Measurement range | 1 ps to 250 s | | | | | Measurement range
Group delay time resolution | 1 ps to 250 s
1 ps | | | | | - | 1 ps | n be set to A \times 2% to A \times 100% for | | | | Group delay time resolution | 1 ps
Is equal to ∆ f and car | to be set to A \times 2% to A \times 100% for a resolution of A \times 2%. | | | | Group delay time resolution | 1 ps Is equal to Δ f and car frequency span, with a | a resolution of A \times 2%. | | | | Group delay time resolution | 1 ps
Is equal to Δ f and car
frequency span, with a | a resolution of A × 2%. points -1 | | | # — Specifications | ons — | | | | | | | |--|--|--|--|--|---|--| | Signal Source Charact | eristics | s | | | | | | Measurement frequency | | | | | | | | Range | 40MHz to 8.0 GHz | | | | | | | Set resolution | 1 Hz | | | | | | | Measurement resolution | ±0.005 ppm | | | | | | | Accuracy | ±20 ppm (25°C ±5°C) | | | | | | | Stability | ±5 ppm (25°C ±5°C) | | | | | | | Output level | | , | | | | | | (40 MHz to 3.8 GHz) | Type A Type B Type C | | | Туре С | | | | Range | | o -8 dBm | +7 to -18 dBm | | +10 to -15 dBm | | | Resolution | 0.01 dB | | | | | | | Accuracy | ±0.5 dB (50 MHz, 0dBm, 25°C ±5°C) | | | | | | | Linearity | 25°C ±5 | °C | | | | | | • | | ±0.4 dB | +12 to -3 dBm | | With respect | | | | Type A | ±0.7 dB | +17 to -8 dBm | | to +7 dBm | | | | | ±0.4 dB | +2 to -13 dBm | | With respect | | | | Type B | ±0.7 dB | +7 to -18 dBm | | to -3 dBm | | | | | ±0.4 dB | +5 to -10 dBm | | With respect | | | | Type C | ±0.7 dB | +10 to -15 dBm | | to 0 dBm | | | Flatness | 2.0 dBp- | p (25°C ±5°C | | | · · | | | | For type | C, at test por | t | | | | | Output level | | evel fixed | | | | | | (3.8 GHz to 8GHz) | Type A | | Type B | | Туре С | | | , | -3 dBn | -3 dBm or more -16 dBm or more -13 dBm or more | | | | | | Output impedance | 50 ohms | | | | | | | Signal purity | | | | | | | | Harmonic distortion | ≤20 dBc | (at maximum | output, 40 MHz to 3.8 | GHz | 2) | | | Non-harmonic spurious | ≤25 dBc | (at maximum | n output, 40 MHz to 3.8 | GHz | 2) | | | Phase noise | -85 dBc | to 20 log (f/4 | 0 MHz) | | | | | | 10 kHz c | 10 kHz offset, 1 Hz bandwidth, at maximum output | | | | | | Sweep function | | | | | | | | Sweep parameter | Frequency, signal level | | | | | | | Maximum sweep range | | | | | | | | Frequency | 40 MHz to 8.0 GHz | | | | | | | ricquelicy | 40 MHz | to 8.0 GHz | | | | | | Trequelicy | - | to 8.0 GHz
rpe A | Туре В | | Туре С | | | Signal level | Ту | | Type B
+7 dBm to -18 dBm | +10 | Type C
O dBm to -15 dBm | | | | +17 dBm | rpe A
n to -8 dBm | | | 0 dBm to -15 dBm | | | Signal level | +17 dBm | rpe A
n to -8 dBm
og frequency s | +7 dBm to -18 dBm | ary | O dBm to -15 dBm
frequency | | | Signal level | +17 dBm
Linear/lo
sweep, l | rpe A
n to -8 dBm
ng frequency s
evel sweep ar | +7 dBm to -18 dBm
sweep, partial and arbiti | ary | O dBm to -15 dBm
frequency | | | Signal level
Sweep type | +17 dBm
Linear/lo
sweep, l
0.15 ms | rpe A n to -8 dBm ng frequency s evel sweep ar /point (with n | +7 dBm to -18 dBm
sweep, partial and arbitr
nd CW (single frequency | ary | O dBm to -15 dBm
frequency | | | Signal level
Sweep type | +17 dBm
Linear/ld
sweep, l
0.15 ms,
0.25 ms, | rpe A n to -8 dBm ng frequency sevel sweep ar /point (with n /point (with 2 | +7 dBm to -18 dBm
sweep, partial and arbitr
nd CW (single frequency
ormalized calibration) | ary t | O dBm to -15 dBm
frequency
veep | | | Signal level
Sweep type | +17 dBm
Linear/lo
sweep, l
0.15 ms,
0.25 ms,
The mini | rpe A n to -8 dBm og frequency s evel sweep ar /point (with n /point (with 2 imum sweep | +7 dBm to -18 dBm
sweep, partial and arbitr
d CW (single frequency
ormalized calibration)
-port full calibration) | rary t | O dBm to -15 dBm
frequency
/eep | | | Signal level
Sweep type | +17 dBm
Linear/lo
sweep, I
0.15 ms,
0.25 ms,
The mini
format, 1 | rpe A n to -8 dBm og frequency s evel sweep ar /point (with n /point (with 2 imum sweep type of error o | +7 dBm to -18 dBm
sweep, partial and arbitr
id CW (single frequency
ormalized calibration)
-port full calibration)
time differs according to | ary to sw | O dBm to -15 dBm
frequency
veep
easurement
point, | | | Signal level
Sweep type | +17 dBm
Linear/lo
sweep, I
0.15 ms,
0.25 ms,
The mini
format, t | rpe A n to -8 dBm og frequency s evel sweep ar /point (with n /point (with 2 imum sweep type of error c of measurem | +7 dBm to -18 dBm
sweep, partial and arbitr
and CW (single frequency
ormalized calibration)
-port full calibration)
time differs according to
correction, sweep width | ary for me | O dBm to -15 dBm
frequency
veep
easurement
point, | | | Signal level
Sweep type
Sweep time | +17 dBm
Linear/Ic
sweep, I
0.15 ms,
0.25 ms,
The mini
format, 1
number
3, 6, 11, | n to -8 dBm
og frequency s
evel sweep ar
/point (with n
/point (with 2
imum sweep
type of error c
of measurem
21, 51, 101, | +7 dBm to -18 dBm
sweep, partial and arbitr
of CW (single frequency
ormalized calibration)
-port full calibration)
time differs according to
correction, sweep width
ent points and IF bandw | ary for mean or o | O dBm to -15 dBm
frequency
reep
easurement
point,
1201 points | | | Signal level Sweep type Sweep time Measurement point | +17 dBm
Linear/Ic
sweep, I
0.15 ms,
0.25 ms,
The mini
format, 1
number
3, 6, 11, | n to -8 dBm
og frequency s
evel sweep ar
/point (with n
/point (with 2
imum sweep
type of error of
of measurem
21, 51, 101,
continuous, ho | +7 dBm to -18 dBm
sweep, partial and arbitr
of CW (single frequency
ormalized calibration)
-port full calibration)
time differs according to
correction, sweep width
ent points and IF bandw
201, 301, 401, 601, 80 | ary for mean or o | O dBm to -15 dBm
frequency
reep
easurement
point,
1201 points | | | Signal level Sweep type Sweep time Measurement point | +17 dBm
Linear/ld
sweep, I
0.15 ms,
0.25 ms,
The mini
format, 1
number
3, 6, 11,
Either "C | n to -8 dBm
og frequency s
evel sweep ar
/point (with n
/point (with 2
imum sweep
type of error of
of measurem
21, 51, 101,
continuous, ho | +7 dBm to -18 dBm
sweep, partial and arbitr
of CW (single frequency
ormalized calibration)
-port full calibration)
time differs according to
correction, sweep width
ent points and IF bandw
201, 301, 401, 601, 80 | ary for mean or o | O dBm to -15 dBm
frequency
reep
easurement
point,
1201 points | | | Signal level Sweep type Sweep time Measurement point Sweep trigger | +17 dBm
Linear/lo
sweep, I
0.15 ms,
0.25 ms,
The min
format, 1
number
3, 6, 11,
Either "C
can be s | n to -8 dBm
or frequency sevel sweep ar
/point (with n
/point (with n
/point sweep
type of error coof measurem
21, 51, 101,
tontinuous, ho
elected. | +7 dBm to -18 dBm
sweep, partial and arbitr
of CW (single frequency
ormalized calibration)
-port full calibration)
time differs according to
correction, sweep width
ent points and IF bandw
201, 301, 401, 601, 80 | ary for mean per vidth | O dBm to -15 dBm
frequency
veep
easurement
point,
1201 points
al trigger" | | | Signal level Sweep type Sweep time Measurement point Sweep trigger Sweep mode | Ty +17 dBm Linear/lo sweep, I 0.15 ms. 0.25 ms. The mini format, 1 number 3, 6, 11, Either °C can be s | n to -8 dBm
or frequency sevel sweep ar
/point (with n
/point (with n
/point sweep
type of error coof measurem
21, 51, 101,
tontinuous, ho
elected. | +7 dBm to -18 dBm sweep, partial and arbitral CW (single frequency ormalized calibration) -port full calibration) time differs according to correction, sweep width ent points and IF bandw 201, 301, 401, 601, 80 old, single sweep* or *Ex | ary for mean per vidth | O dBm to -15 dBm
frequency
veep
easurement
point,
1201 points
al trigger" | | | Signal level Sweep type Sweep time Measurement point Sweep trigger Sweep mode | +17 dBm
Linear/lo
sweep, I
0.15 ms,
0.25 ms,
The min
format, 1
number
3, 6, 11,
Either "C
can be s | rpe A In to -8 dBm | +7 dBm to -18 dBm sweep, partial and arbitral CW (single frequency ormalized calibration) -port full calibration) time differs according to correction, sweep width ent points and IF bandw 201, 301, 401, 601, 80 old, single sweep* or *Ex | o me per vidth I, or tern | O dBm to -15 dBm
frequency
veep
easurement
point,
1201 points
al trigger" | | # R3766H/3767H Series ### **Test port Characteristics** | l'est port Characte | ristics | | | | | |---------------------|-----------------------|------------------------------|-----------------------------|--|--| | Test port | 25°C ±5°C | | | | | | Load matching | 18 dB | 40 MHz to 2.6 GHz | | | | | | 16 dB | 2.6 GHz to | 3.8 GHz | | | | | 14 dB | 3.8 GHz to | o 8.0 GHz | | | | Directivity | 25°C ±5°C | | | | | | | 30 dB | 40 MHz to | 2.6 GHz | | | | | 26 dB | 2.6 GHz to | 3.8 GHz | | | | | 22 dB | 3.8 GHz to | o 8.0 GHz | | | | Crosstalk | Types A an | i B | Туре С | | | | | 90 dB (40 MHz to | 3.8 GHz) | 90 dB (40 MHz to 2.6 GHz) | | | | | 80 dB (3.8 GHz to | 5.0 GHz) | 85 dB (2.6 GHz to 3.8 GHz) | | | | | 70 dB (5.0 GHz to | 0.0.011=/ | 70 dB (3.8 MHz to 5.8 GHz) | | | | | 70 db (5.0 dh2 to | 0.0 GHZ) | 60 dB (5.0 GHz to 8.0 GHz) | | | | Connector | Type N (f), 50 ohms | Type N (f), 50 ohms | | | | | Noise level | With respect tp -20 o | IB below max | kimum input level of | | | | | test board | test board | | | | | | -90 dB | 3 kHz ban | dwidth | | | | | -100 dB | 10 kHz ba | ndwidth | | | | Maximum input level | Types A an | i B | Type C | | | | | 0.40 | | +15 dBm (40 MHz to 3.8 GHz) | | | | | 0 dBm | | +12 dB (3.8 GHz to 8 GHz) | | | | Input burning level | +21 dBm, ±30 VDC | | • | | | | Maximum port bias | ±30 VDC, 0.5 A (type | ±30 VDC, 0.5 A (type C only) | | | | ## **Error Correction Function** | Normalized | Corrects frequency response (amplitude and phase) at | |---|---| | 110111111111111111111111111111111111111 | transmission and reflection measurement. | | | | | 1-port calibration | Corrects errors due to directivity, frequency response and | | | source matching at reflection measurement. | | | (For error correction, short/open/load calibration tools are | | | required.) | | 2-port calibration | Corrects errors due to directivity, frequency response, source | | | matching, load matching, and isolation at transmission and | | | reflection measurement. (Type C only) | | Data averaging | Averages data (vector value) for each sweep. Average factor | | | can be set to 2 to 999. | | Data smoothing | Obtains moving average between adjacent measurement | | | points. | | Electrical length correction | Adds measured phase and group delay time and equivalent | | | electrical length or delay time. | | Phase offset correction | Adds measured phase and a constant phase offset. | | Correction by frequency | In frequency interpolation mode calibration, calculates error | | interpolation | coefficient even when frequency and number of horizontal | | | axis points are changed. Changes in frequency range (start/ | | | stop) are applied for the frequency range at initial calibration. | # **Connection of External Equipment** | External display signal | 15 pin D-SUB connector (VGA) | |-------------------------|---| | GPIB data output & | Conforms to IEEE488. | | remote control | | | Parallel I/O | TTL level, 8 bit output (2 ports) | | | 4 bit input and output (2 ports) | | Serial I/O | Conforms to RS232. | | Keyboard I/O | Conforms to IBM PC-AT. | | External reference | Input frequency range : 1, 2, 5, and 10 MHz ±10 ppm | | frequency input | 0 dBm (50 ohms) or less | | Probe power | ±15 V ±0.5 V, 300mA | ## **Display Unit** | F, | | |-------------------------|--| | R3766H series | | | Display unit | Fluorescent character display tube, green | | Resolution | 256 × 64 dots | | Display mode | Character display, 32 lines × 8 characters | | R3767H series | | | Display unit | 7.8 inch TFT color LCD | | Resolution | 640 × 480 dots | | Display mode | Log/linear Cartesian coordinate, polar coordinate and Smith | | | chart (impedance/admittance display) | | Display format | Single channel | | | 2 channels (Overlapped display, separated display) | | | 4 channels (Separated display) | | Measurement condition | Start/stop, center/span, scale/DIV reference level, marker | | display | value, soft key functions, warning messages | | Reference line position | Top (100%) to bottom (0%) of vertical-axis memory | | Auto scale | Sets reference value and scale so that measured trace be | | | displayed in the best form. | | Brightness | Backlight can be turned ON or OFF. | | | Display unit Resolution Display mode R3767H series Display unit Resolution Display mode Display format Measurement condition display Reference line position Auto scale | ### Marker Function (R3767H only) | viai kei Tunchon (KS. | orn omy, | |-------------------------------|---| | Marker display | Marker reading can be converted into display value | | | corresponding to each measurement format. | | Multi marker | 10 markers can be set independently for each channel. | | Delta marker | Each of 10 delta markers can be specified as reference | | | marker and delta value between markers can be measured. | | Marker couple | Markers of each channel can be set in coupled or | | | independent manner. | | Analysis of specified section | Marker search for section specified with Δ marker can be | | | performed. | | MRK search | MAX search, MIN search, and NEXT search | | Marker tracking | Search operation for each sweep. | | Target search | Calculates bandwidth, center frequency and Q for -X dB point. | | | Frequency for phase 0° and frequency width of ±X° can be | | | searched for. | | MRK→ | MRK→ reference value, MRK → START, MRK → STOP, | | | MRK→ CENTER | | Limit line function | | | | | ## **Programming Function** | i rogramming i uncuc | rogramming runction | | | |---------------------------|---|--|--| | BASIC controller function | The R3766H/3767H series and any other measuring instruments | | | | | with GPIB interface can be controlled by means of standard | | | | | controller function. | | | | Built-in functions | High-speed analysis of measurement data is possible using | | | | | built-in functions. | | | | FDD function | Conforms to MS-DOS format | | | | | Accommodates 3 modes (DD 720 kB, HD 1.2 MB/1.4 MB) | | | ### **General Specifications** | Operating environment | | |-----------------------|---| | When FDD is used | Temperature range : +5 to +40°C | | | Humidity range : 80% or less (without condensation) | | When FDD is not used | Temperature range : 0 to +50°C | | | Humidity range : 80% or less (without condensation) | | Storage environment | Storage temperature range : -20 to +60°C | | Power voltage | 100 to 120 VAC, 220 to 240 VAC, 48 to 66 Hz | | | Automatic switching between 100 VAC and 200 VAC lines | | Power consumption | 300 VA or less | | Dimensions | Approx. 424 (width) × 220 (height) × 400 (depth) mm | | Weight | 16 kg maximum (R3767H series) |