RACAL INSTRUMENTS

Switch Solutions

The only test system you want
is the one that's made for you.

About Us

Racal Instruments produced the world's first compact electronic frequency counter in the late 1950's, launching a broad line of instrument products for which Racal is still renowned. Since then Racal has led the way in several product areas: general purpose test equipment, automatic test equipment, VXIbus modules, communication test sets, laser diode and photonics test systems and burn-in stations, chassis, switching, and, most recently, turnkey system integration.
The global Automatic Test Equipment market continues to grow at an accelerating rate, and Racal Instruments remains at the forefront with the technology, engineering, products and system integration services to support the industry's most demanding customer needs. We are the leading integrators of test systems for communications, broadband, military and industrial customers. Some of the numerous application solutions developed by Racal include laser diode burn-in, jet engine testers, automotive testing, digital communications and radar simulators.

The backbone of Racal Instruments' success relies heavily on the strength of our Engineering resources. Our company is committed to Engineering innovation and continues to apply the appropriate technology in our customer-centric system solutions. We back our Engineering resources with a corporate-wide concern for quality that begins with design and continues through the manufacturing, field installation, and support processes.
Our excellence in quality was recently recognized by Intel. We earned their coveted SCQI (Supplier Continuous Quality Improvement) award for the second consecutive year, a first for any test instrument company. We did it for Intel; let us prove what we can do for you.

Why Switching Solutions from Racal

Today's system design engineers face a common problem: With so many switch suppliers and switch types to choose from, just how do you select the right one? Fortunately there is an easy one-stop solution, Racal Instruments. Racal has been designing accurate, reliable, flexible, and user friendly switch solutions since 1978. Our engineers constantly seek to maximize performance and reliability by incorporating new techniques, technology, and manufacturing practices to create the most practical, reliable, and precise instruments for your unique application. We continue to push switching technology with higher speeds, higher densities, and lower costs. Racal is the first and only choice for design engineers in automatic test equipment.

Racal's Technology Drives Down Your Costs for Switching!

Series	1200	1250	1255	1256
	$\begin{gathered} 50 \text { Ch } \\ \text { MUX: } \\ \$ 130 / c h \end{gathered}$	100 Ch MUX: \$88/ch	384 Ch MUX: $\$ 32 / \mathrm{ch}$	512 Ch MUX: $\$ 20 / \mathrm{ch}$
Year	1978	1982	1995	2001

Switching Systems

1256 Switching System

- Ethernet/GPIB/RS-232 Remote Interface
- Front-Panel Controls
- Wide Range of Switching and Digital I/O Plug-Ins
- Low Cost
- High Throughput and Advanced Features for Reduced Test Time
- SCPI Command Set
- LabVIEW and LabWindows/CVI Drivers

The $\mathbf{1 2 5 6}$ switching system is a high-performance switching and control system in a compact 2 U rack mountable package. It controls up to eight (8) Adapt-a-Switch ${ }^{\circledR}$ plug-ins for switching and digital I/O. These plug-ins provide a wide range of switching capability: high current to 13 A , high voltage to 1 kV , RF/Microwave to 18 GHz , and even digital I/O with 96 channels per plug-in. The user can easily configure these plug-ins into a high-performance, low-cost solution to satisfy any switch applications. A single 1256 can accommodate any one of the following configurations, as well as countless others: 1152-point matrix, 512-channel scanner/multiplexer, 640 SPST switches, 768 channels of TTL, CMOS, or open-collector digital I/O.

The highly intuitive menu-driven interface provides easy access to all relay and digital I/O states, system preferences, and the nonvolatile memory features of the 1256 switching system. The GPIB and RS- 232 remote interfaces, which are IEEE 488.2 and SCPI compliant, provide any terminal or computer with access to all standard features. In addition, the remote interfaces can access advanced features: Path Level Switching, Include Lists, Exclude Lists, Scan List, Trigger Delays, Switch Mode, and Confidence Mode.

1257 Configurable Switching System

- Ideal Platform for Optical, RF, Microwave, and Hybrid Systems
- Ethernet/GPIB/RS-232 Remote Interface with SCPI Compliant Command Set
- Flexible Rack-Mount, 4U, 5U, or 6U Version
- Intuitive Front-Panel Control
- Detachable Rear Pull-Out Drawer for Rapid Bench Serviceability
- Removable Top and Bottom Covers for Easy In-Service Troubleshooting and Component Replacements
The Model $\mathbf{1 2 5 7}$ switching system is a high-performance switching and controls system designed specifically for applications such as automated testing of mobile radios, wireless phones, pagers, antennas, RF components, optical components, industrial and medical wireless products. This switching system makes it easier than ever to specify, order, install and commission a switch assembly based on your requirements and specifications.
The 1257 provides significant control capabilities. Each system can control up to 240 TTL/CMOS and/or 2A open-drain channels. When paired with its spacious drawer size, this makes the 1257 ideal for housing and controlling the most demanding and space intensive applications. The nonvolatile memory stores up to 100 complete system switch states as well as user preferences like RS232 baud rates, GPIB address, and display settings.
The 1257 incorporates fully removable bottom and top covers that, when used in conjunction with rack-mount slides, allow in-service troubleshooting and component replacement. Providing additional flexibility, every 1257 switching configuration is built on a removable drawer. This allows easy bench service and supports equipment sparing for critical applications.

1255A Switching System

- GPIB/RS-232 Control
- DC to Light

The 1255A high-performance switch system takes advantage of the density offered by full-size, 1260 series, switch modules and offers the capability of system expansion. This affordable system offers modules for applications ranging from DC to light, including RF/Microwave, digital, optical, signal, matrix, multiplexer and power. The system comes complete with both an internal IEEE-STD-488 and an RS-232 interface. The VXIplugeplay compliant drivers make it an easy addition to any system.

Adapt-a-Switch ${ }^{\circledR}$ Plug-in Switch Cards

Featuring unprecedented density and flexibility to suit your switching requirements, Adapt-a-Switch ${ }^{\circledR}$ plug-ins can be used with the Model 1256, GPIB/RS-232 Switching System, or with the Models $\mathbf{1 2 6 0 - 1 0 0}$ and 1260-101, VXIbus carriers. Switching solutions include RF, microwave, signal, matrix, and multiplexer as well as power and discrete.
When the plug-in switch cards are used with the 1260-100 or the 1260-101 Adapt-a-Switch ${ }^{\circledR}$ carrier, an Option 01T interface is required. This interface is housed in the carrier and can control twelve plug-in cards. This option additionally provides message-based operation for ease-of-use and register-based operation for maximum speeds. When used with the 1256 mainframe, no additional controller is required.

The Adapt-a-Switch series includes VXIplugeplay support for WIN95/98/ME/NT/2000/XP frameworks, including drivers for LabWindows/CVI and LabVIEW.

Adapt-a-Switch Plug-in Series Selection Guide for Model 1256 and Model 1260-100

Signal Type	Model No.	Configuration Ө Max Spec. Ranges	Connection Type/Comments
Digital Test	1260-114TTL	96 Discrete I/O, TTL, $5.5 \mathrm{~V}, 15 \mathrm{~mA}$ source/24 mA sink, $120 \mathrm{~mW}, 200 \mathrm{kHz}$	160-pin DIN (Not Supplied)
	1260-114CMOS	96 Discrete I/O, CMOS, 5.5 V, 8 mA source/sink, $40 \mathrm{~mW}, 200 \mathrm{kHz}$	
	1260-1140C	96 Discrete I/O, Open Collector, $32 \mathrm{~V}, 200 \mathrm{~mA}$ sink, 6.4 W, 200 kHz	
	1260-114HVOC	48 Discrete I/O, High Voltage Open Collector, 50 V, 1.5 A sink, $75 \mathrm{~W}, 200 \mathrm{kHz}$	
General Purpose	1260-111	12-Ch Form A and Form B SPST, 1 kVDC/VAC, 2 ADC/AAC, $60 \mathrm{~W} / 60 \mathrm{VA}, 60 \mathrm{MHz}$	48-pin DIN (Not Supplied)
	1260-111A	12-Ch SPDT, 1 kVDC/VAC, 2 ADC/AAC, $60 \mathrm{~W} / 60 \mathrm{VA}, 60 \mathrm{MHz}$	
	1260-112	20-Ch DPDT, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC/AAC}, 60 \mathrm{~W} / 125 \mathrm{VA}, 120 \mathrm{MHz}$	160-pin DIN (Not Supplied)
	1260-117	52-Ch SPDT, 220 VDC/250 VAC, 2 ADC/AAC, $60 \mathrm{~W} / 125 \mathrm{VA}, 60 \mathrm{MHz}$	
	1260-118	$80-\mathrm{Ch}$ SPST, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 125 \mathrm{VA}, 100 \mathrm{MHz}$	
Multiplexers	1260-131A	10-Ch SP4T, $220 \mathrm{VDC/250} \mathrm{VAC}$,1 ADC/AAC, $30 \mathrm{~W} / 125 \mathrm{VA}, 200 \mathrm{MHz}$	IDC
	1260-131B	$26-\mathrm{Ch}$ SP4T, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 125 \mathrm{VA}, 200 \mathrm{MHz}$	160-pin DIN (Not Supplied)
	1260-132	$1 \mathrm{x} 23,1 \mathrm{kVDC/VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 60 \mathrm{VA}, 5 \mathrm{MHz}$	48-pin DIN (Not Supplied)
	1260-134	$16(1 \times 4), 220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 125 \mathrm{VA}, 100 \mathrm{MHz}$	160-pin DIN (Not Supplied)
	1260-136B	$2(1 \times 21)$ or $1 \times 42,500 \mathrm{VDC} / \mathrm{VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 10 \mathrm{~W} / \mathrm{VA}$, reed relay	48-pin DIN (Not Supplied)
	1260-136C	2(1x21) or 1x42, $1000 \mathrm{VDC} / \mathrm{VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 25 \mathrm{~W} / \mathrm{VA}$, reed relay	
	1260-136D	2 (1x21) or 1x42, $500 \mathrm{VDC} / \mathrm{VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 50 \mathrm{~W} / \mathrm{VA}$, mercury-wetted	
	1260-138A	$8(1 \mathrm{x} 8), 220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 125 \mathrm{VA},>85 \mathrm{MHz}(1 \mathrm{x} 8) />4 \mathrm{MHz}$ (1 x 64)	160-pin DIN (Not Supplied)
Matrix	1260-145A	9(4x4), $60 \mathrm{VDC/} 125 \mathrm{VAC}, 1 \mathrm{~A} @ 30 \mathrm{VDC/} .3 \mathrm{~A} @ 125 \mathrm{VAC}, 30 \mathrm{~W} / 37.5 \mathrm{VA}, 42 \mathrm{MHz}$	160-pin DIN (Not Supplied), Uses 4×4 sub-module to configure matrix
	1260-145B	3 (4x12), 60 VDC/ 125 VAC, 1 A @ 30 VDC/. 3 A @ 125 VAC, 30 W/37.5 VA, 31 MHz	
	1260-145C	$2(4 x 16), 60 \mathrm{VDC} / 125 \mathrm{VAC}, 1 \mathrm{~A} @ 30 \mathrm{VDC} / 3 \mathrm{~A} @ 125 \mathrm{VAC}, 30 \mathrm{~W} / 37.5 \mathrm{VA}, 24 \mathrm{MHz}$	
	1260-145D	$4 \times 36,60 \mathrm{VDC} / 125 \mathrm{VAC}, 1 \mathrm{~A} @ 30 \mathrm{VDC} / .3$ A @ $125 \mathrm{VAC}, 30 \mathrm{~W} / 37.5 \mathrm{VA}, 13 \mathrm{MHz}$	
	1260-145E	2(8x8), $60 \mathrm{VDC/} 125 \mathrm{VAC}, 1 \mathrm{~A} @ 30 \mathrm{VDC/} / 3 \mathrm{~A} @ 125 \mathrm{VAC}, 30 \mathrm{~W} / 37.5 \mathrm{VA}, 27 \mathrm{MHz}$	
	1260-145F	$8 \times 16,60 \mathrm{VDC} / 125 \mathrm{VAC}, 1 \mathrm{~A} @ 30 \mathrm{VDC} / 3 \mathrm{~A} @ 125 \mathrm{VAC}, 30 \mathrm{~W} / 37.5 \mathrm{VA}, 20 \mathrm{MHz}$	
	1260-145G	$12 \times 12,60 \mathrm{VDC} / 125 \mathrm{VAC}, 1 \mathrm{~A} @ 30 \mathrm{VDC} / .3$ A @ $125 \mathrm{VAC}, 30 \mathrm{~W} / 37.5 \mathrm{VA}, 27 \mathrm{MHz}$	
Power	1260-120	$20-\mathrm{Ch}$ SPST, $125 \mathrm{VDC} / 250 \mathrm{VAC}, 10 \mathrm{ADC} / 13 \mathrm{AAC}, 300 \mathrm{~W} / 2000 \mathrm{VA}$, 400 Hz (Power) $/ 50 \mathrm{MHz}$ (Small Signal)	Rack \& Panel with power pins supplied
	1260-116	24-Ch SPDT, $30 \mathrm{VDC} / 250 \mathrm{VAC}, 5 \mathrm{ADC} / \mathrm{AAC}, 150 \mathrm{~W} / 1250 \mathrm{VA}, 50 \mathrm{MHz}$	78-Pin Mating Connector supplied
	1260-121 A/B	$12-\mathrm{Ch}$ SPDT, $125 \mathrm{VDC} / 250 \mathrm{VAC}, 10 \mathrm{ADC} / 13 \mathrm{AAC}, 150 \mathrm{~W} / 1250 \mathrm{VA}, 35 \mathrm{MHz}$ 400 Hz (Power) $/ 35 \mathrm{MHz}$ (Small Signal)	Screw Terminal Interface or Rack \& Panel Interface available
$\mathrm{RF}(50 \Omega / 75 \Omega)$	1260-150	10 (1x4), $50 \Omega, 100 \mathrm{VDC} / \mathrm{VAC}, 250 \mathrm{mADC} / \mathrm{mAAC}, 3 \mathrm{~W}(\mathrm{RF}), 500 \mathrm{MHz}$	Coaxial Mating Connectors (2) supplied, Pins not supplied.
	1260-152/172	17-Ch SPDT, 50 or $75 \Omega, 30 \mathrm{VDC}, .5 \mathrm{ADC}, 10 \mathrm{~W}, 1.2 \mathrm{GHz} @ 50 \Omega, 900 \mathrm{MHz} @ 75 \Omega$	
	1260-152HV/172HV	20-Ch SPST \& 2-Ch SPDT, 50 or 75Ω, $500 \mathrm{VDC} / \mathrm{VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 10 \mathrm{~W} / \mathrm{VA}, 700 \mathrm{MHz}$	
	1260-155	2 (SP4T), $50 \Omega, 30 \mathrm{VDC/VAC}, 0.5 \mathrm{AAC} / \mathrm{ADC}, 10 \mathrm{~W}(\mathrm{RF}), 1.5 \mathrm{GHz}$	MCX Connectors 75Ω available upon request.
	1260-155A	2 (SP4T), $50 \Omega, 30 \mathrm{VDC/VAC}, 0.5 \mathrm{AAC} / \mathrm{ADC}, 10 \mathrm{~W}$ (RF), 3.0 GHz	
	1260-155T	2 (SP4T), $50 \Omega, 5 \mathrm{VDC} / \mathrm{VAC}, 0.5 \mathrm{AAC} / \mathrm{ADC}, 1 \mathrm{~W}$ (RF), 1.5 GHz	
	1260-155AT	2 (SP4T), 50Ω, $5 \mathrm{VDC} / \mathrm{VAC}, 0.5 \mathrm{AAC} / \mathrm{ADC}, 1 \mathrm{~W}$ (RF), 3.0 GHz	
Microwave (50Ω)	1260-160B	2(SPDT), DC to 18 GHz , 1-slot	SMA Coax Not Supplied
	1260-160E	5(SPDT), DC to 18 GHz , 2-slot	
	1260-162A	1 (2x2 Transfer Switch), 490 W @ $100 \mathrm{MHz}, 50 \mathrm{~W} @ 18 \mathrm{GHz}$, DC to 18 GHz , 2-slot	
	1260-162B	2 (2x2 Transfer Switch), 490 W @ $100 \mathrm{MHz}, 50 \mathrm{~W} @ 18 \mathrm{GHz}$, DC to 18 GHz , 2-slot	
	1260-164A	SP4T, 490 W @ 100 MHz , 50 W @ 18 GHz , DC to 18 GHz , 2-slot	
	1260-164B	2 (SP4T), 490 W @ 100 MHz , 50 W @ 18 GHz , DC to 18 GHz , 2-slot	
	1260-167A	SP6T, DC to 18 GHz , 2-slot	Relays replaceable in under 5 min . SMA Coax Not Supplied
	1260-167B	2(SP6T), DC to 18 GHz , 2 -slot	
Development	1260-700	Prototyping Module for 1256 or the 1260-100, 88 Digital I/O Control Lines, $6^{\prime \prime} \times 3.5^{\prime \prime}$ Prototyping Area, $0.1^{\prime \prime} \times 0.1^{\prime \prime}$	Mating Connector Not Supplied
Controller	Option 01T installed/uninstalled	Control up to 12-1260 Series switch cards or Adapt-a-Switch plug-ins. Register based for high-speed switching. Message-based for programming. IEEE-488 and SCPI.	Not compatible with Option 01 syntax.

 for Assistance.

1260 Series Switch Cards

- VXI Switching •DC to Light

The $\mathbf{1 2 6 0}$ Series of Switch Cards is the only product that provides you the convenience of message-based control for ease of programming and a register-based interface for high-speed control. Our family of full-size switch modules affords you switching solutions that include optical, RF, microwave, signal, matrix, multiplexers, power and discrete. So whatever your application, we have a solution. We are always adding to and refining our selection, so please visit our website for the latest information. In addition, if you don't see what you want, please contact us and we will be happy to discuss a custom solution with you.

1260 Series, C-Size, Selection Guide for VXI and 1255A

Signal Type	Model No.	Configuration Ө Max Spec. Ratings	Connection Type/Comments
Digital Test	1260-14	96 Discrete I/O, TTL, $5.25 \mathrm{~V}, 15 \mathrm{~mA}$ source/48 mA sink, $252 \mathrm{~mW}, 1 \mathrm{kHz}$ or 200 kHz	IDC Flat Ribbon Supplied
	1260-14 (CMOS)	96 Discrete I/O, CMOS, 5.00 V, 6 mA source/sink, $30 \mathrm{~mW}, 1 \mathrm{kHz}$ or 200 kHz	
	1260-14C	96 Discrete I/O, Open Collector, $32 \mathrm{~V}, 200 \mathrm{~mA}$ sink, $6.4 \mathrm{~W}, 1 \mathrm{kHz}$ or 200 kHz	
General Purpose	1260-12	20-Ch DPDT, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC/AAC}, 60 \mathrm{~W} / 62.5 \mathrm{VA}, 35 \mathrm{MHz}$	Positronic SGMC (solder) Supplied
	1260-13	$40-\mathrm{Ch}$ DPST, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 62.5 \mathrm{VA}, 50 \mathrm{MHz}$	
	1260-16	$40-\mathrm{Ch}$ SPDT, $110 \mathrm{VDC} / 250 \mathrm{VAC}, 5 \mathrm{ADC/AAC}, 150 \mathrm{~W} / 1250 \mathrm{VA}, 30 \mathrm{MHz}$	
	1260-17	$80-\mathrm{Ch}$ SPDT, $250 \mathrm{VDC/} 250 \mathrm{VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 30 \mathrm{~W} / 62.5 \mathrm{VA}, 60 \mathrm{MHz}$	IDC or DIN (crimp) Supplied
	1260-18	152-Ch SPST, 220 VDC/250 VAC, 2 ADC/AAC, $60 \mathrm{~W} / 125 \mathrm{VA}, 100 \mathrm{MHz}$	160-pin DIN (crimp) NOT Supplied
Power	1260-20	20-Ch DPST, $250 \mathrm{VDC} / 380 \mathrm{VAC}, 8 \mathrm{ADC/AAC}, 150 \mathrm{~W} / 2000 \mathrm{VA}, 30 \mathrm{MHz}$	Positronic GMCT (solder) Supplied
	1260-20B	$20-\mathrm{Ch}$ independent form A/B or SPDT, $250 \mathrm{VDC} / 380 \mathrm{VAC}, 8 \mathrm{ADC} / \mathrm{AAC}, 150 \mathrm{~W} / 2000 \mathrm{VA}, 30 \mathrm{MHz}$	
	1260-22	$20-\mathrm{Ch}$ SPST, configurable, $250 \mathrm{VDC} / 250 \mathrm{VAC}, 20 \mathrm{ADC} / \mathrm{AAC}, 600 \mathrm{~W} / 4800 \mathrm{VA}, 300 \mathrm{KHz}$	Rack \& Panel (solder) Supplied
	1260-22A	Mux, 5(1x4) \& 10(1x2), 250 VDC/250 VAC, 20 ADC/AAC, $600 \mathrm{~W} / 4800 \mathrm{VA}, 300 \mathrm{KHz}$	
Multiplexers	1260-30A	$1 \times 40,2$ Wire, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 62.5 \mathrm{VA}, 10 \mathrm{MHz}$	Positronic SGMC (solder) Supplied
	1260-30B	2 (1x20), 2 Wire, 220 VDC/250 VAC, 2 ADC/AAC, 60 W/62.5 VA, 10 MHz	
	1260-30C	4 (1x10), 2 Wire, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 62.5 \mathrm{VA}, 10 \mathrm{MHz}$	
	1260-30D	8 (1x5), 2 Wire, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 62.5 \mathrm{VA}, 10 \mathrm{MHz}$	
	1260-35	1 x 96 (STK), 2 Wire, configurable, $220 \mathrm{VDC/250} \mathrm{VAC}$,1 ADC/AAC, $60 \mathrm{~W} / 125 \mathrm{VA}, 50 \mathrm{MHz}$	IDC or DIN (crimp) Supplied
	1260-38	16(1x8), 1,2, or 4 Wire, S/W configurable, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 125 \mathrm{VA}, 30 \mathrm{MHz}$	160-pin DIN (crimp) NOT Supplied
	1260-38T	$16(1 \times 8)$, 2 or 4 Wire, S/W configurable, $220 \mathrm{VDC} / 250 \mathrm{VAC}, 2 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 125 \mathrm{VA}, 30 \mathrm{MHz}$	
Multi-Purpose	1260-37	40-Ch SPDT \& 8(1x6) Mux, $250 \mathrm{VDC/VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 60 \mathrm{~W} / 62.5 \mathrm{VA}, 35 \mathrm{MHz}$	IDC or DIN (crimp) Supplied
	1260-39	5-Ch DPST, $220 \mathrm{VDC} / \mathrm{VAC}, 10 \mathrm{ADC} / \mathrm{AAC}, 150 \mathrm{~W} / 2000 \mathrm{VA}, 5 \mathrm{MHz}$	AMP, Positronic SGMC Connectors or pins NOT supplied
		48-Ch SPST, 6(1x2) 1-wire Mux, 3(lx4) 1-wire Mux, 5(2x8) 1-wire Matrix, 110 VDC/125 VAC, 1 ADC/AAC, $60 \mathrm{~W} / 125 \mathrm{VA}, 30 \mathrm{MHz}$	
Matrix	1260-40A	4×24 Matrix, 2-Wire, 250 VDC/VAC, 1 ADC/AAC, $30 \mathrm{~W} / 62.5 \mathrm{VA}, 20 \mathrm{MHz}$	Positronic SGMC (solder) Supplied
	1260-40B	8×12 Matrix, 2-Wire, 250 VDC/VAC, 1 ADC/AAC, $30 \mathrm{~W} / 62.5 \mathrm{VA}, 20 \mathrm{MHz}$	
	1260-40C	2(4x12) Matrix, 2-Wire, $250 \mathrm{VDC} / \mathrm{VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 30 \mathrm{~W} / 62.5 \mathrm{VA}, 20 \mathrm{MHz}$	
	1260-45A	4(4x16) Matrix, 2-Wire, $250 \mathrm{VDC} / \mathrm{VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 30 \mathrm{~W} / 62.5 \mathrm{VA}, 25 \mathrm{MHz}$	IDC or DIN (crimp) Supplied
	1260-45B	2(4x32) Matrix, 2-Wire, $250 \mathrm{VDC} / \mathrm{VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 30 \mathrm{~W} / 62.5 \mathrm{VA}, 25 \mathrm{MHz}$	
	1260-45C	2(8x16) Matrix, 2-Wire, $250 \mathrm{VDC} / \mathrm{VAC}, 1 \mathrm{ADC} / \mathrm{AAC}, 30 \mathrm{~W} / 62.5 \mathrm{VA}, 25 \mathrm{MHz}$	
RF (50Ω)	1260-50C	$8(1 \times 4) \mathrm{s} / \mathrm{w}$ configurable to $1 \times 39,200 \mathrm{VDC} / \mathrm{VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 10 \mathrm{~W}(\mathrm{RF}), 350 \mathrm{MHz}$	Connector body Supplied, Coax pins NOT Supplied
	1260-50D	16 (1x4) s/w configurable to 1x79, $200 \mathrm{VDC/VAC}, .5 \mathrm{ADC/AAC}, 10 \mathrm{~W}(\mathrm{RF}),>200 \mathrm{MHz}(1 \times 79)$	
	1260-51	S/w configurable as $6(2 \times 6), 3(2 \times 12), 2 \times 36$ Matrix, $110 \mathrm{VDC} / 125 \mathrm{VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 30 \mathrm{~W} / 62.5 \mathrm{VA}$, $400 \mathrm{MHz}(2 \mathrm{x} 6) / 325 \mathrm{MHz}(2 \times 36)$	
	1260-54	6(1x4) w/optional terminations, $30 \mathrm{VDC/100} \mathrm{VAC}, \mathrm{1.5} \mathrm{ADC/AAC} 40 \mathrm{~W},, 1.3 \mathrm{GHz}$	SMC Connectors
	1260-58	4 (SP8T), $24 \mathrm{VDC/VAC}, 10 \mathrm{mADC} / \mathrm{mAAC}, 10 \mathrm{~W}$ (RF), 750 MHz	SMB Connectors
	1260-59A	4 (SP4T), $24 \mathrm{VDC} / \mathrm{VAC}, 10 \mathrm{mADC} / \mathrm{mAAC}, 10 \mathrm{~W}(\mathrm{RF}), 4 \mathrm{GHz}$	SMB Connectors
	1260-59B	8 (SP4T), $24 \mathrm{VDC/VAC}, 10 \mathrm{mADC} / \mathrm{mAAC}, 10 \mathrm{~W}(\mathrm{RF}), 4 \mathrm{GHz}$	
Special RF	1260-75A	8 (1x4) s/w configurable to $1 \times 39,75 \Omega, 200 \mathrm{VDC} / \mathrm{VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 10 \mathrm{~W}(\mathrm{RF}), 100 \mathrm{MHz}$	Connector body Supplied, Coax pins NOT Supplied
	1260-75B	16(1x4) s/w configurable to 1x79, 75Ω, $200 \mathrm{VDC/VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 10 \mathrm{~W}(\mathrm{RF}), 100 \mathrm{MHz}$	
	1260-93A	$8(1 \times 4) \mathrm{s} / \mathrm{w}$ configurable to $1 \times 39,93 \Omega, 100 \mathrm{VDC} / \mathrm{VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 10 \mathrm{~W}(\mathrm{RF}), 100 \mathrm{MHz}$	
	1260-93B	16(1x4) s/w configurable to 1x79, 93Ω, $100 \mathrm{VDC/VAC}, .5 \mathrm{ADC} / \mathrm{AAC}, 10 \mathrm{~W}(\mathrm{RF}), 100 \mathrm{MHz}$	
Microwave (50 Ω)	1260-60A	3 (SPDT), single slot \& 24 external relay drivers, $40 \mathrm{~W}(\mathrm{RF}), 18 \mathrm{GHz}$	SMA Coax NOT Supplied. Positronic SGMC (Crimp) Supplied.
	1260-60B	3(SPDT), single slot \& 24 external relay drivers, 50Ω terminations, $40 \mathrm{~W}(\mathrm{RF}), 18 \mathrm{GHz}$	
	1260-64A	4(SP6T), dual slot \& 32 external relay drivers, 40 W (RF), 18 GHz	
	1260-64B	2 (SP6T), dual slot 832 external relay drivers, $40 \mathrm{~W}(\mathrm{RF}), 18 \mathrm{GHz}$	
	1260-64C	SP6T, dual slot 832 external relay drivers, $40 \mathrm{~W}(\mathrm{RF}), 18 \mathrm{GHz}$	
	1260-66A	6(1x6), dual slot, $30 \mathrm{~W}(\mathrm{RF}), 18 \mathrm{GHz}$	SMA Coax NOT Supplied.
	1260-66B	4(1x6), dual slot, $30 \mathrm{~W}(\mathrm{RF}), 18 \mathrm{GHz}$	
	1260-66C	2(1x6), dual slot, $30 \mathrm{~W}(\mathrm{RF}), 18 \mathrm{GHz}$	
	1260-67A	6 (1x6), single slot, $50 \mathrm{~W}(\mathrm{RF}),>18 \mathrm{GHz}$	
	1260-67B	4 (1x6), single slot, $50 \mathrm{~W}(\mathrm{RF}),>18 \mathrm{GHz}$	
	1260-67C	2(1x6), single slot, $50 \mathrm{~W}(\mathrm{RF}),>18 \mathrm{GHz}$	
Optical	1260-82C	3(1x2), single slot, FC Optic Connectors, 1290-1570 nm wavelength, single-mode fiber	Ideal for SONET testing. Other Fiber types, Wavelengths \& Connectors available (Specials)
	1260-82D	4(1x2), single slot, FC Optic Connectors, 1290-1570 nm wavelength, single-mode fiber	
	1260-82F	6(1x2), single slot , FC Optic Connectors, 1290-1570 nm wavelength, single-mode fiber	
	1260-822B	2 (2x2), single slot , FC Optic Connectors, $1290-1570 \mathrm{~nm}$ wavelength, single-mode fiber	
	1260-822D	$4(2 \times 2)$, single slot , FC Optic Connectors, $1290-1570 \mathrm{~nm}$ wavelength, single-mode fiber	
	1260-84A-1	1×4, single slot , FC Optic Connectors, $1290-1570 \mathrm{~nm}$ wavelength, single-mode fiber	
	1260-84B-1	2(1x4), single slot, FC Optic Connectors, 1290-1570 nm wavelength, single-mode fiber	
	1260-88A-1	1x8, single slot, FC Optic Connectors, $1290-1570 \mathrm{~nm}$ wavelength, single-mode fiber	
	1260-88B-1	2(1x8), single slot, FC Optic Connectors, 1290-1570 nm wavelength, single-mode fiber	
	8455	Multi-Channel, Variable Optical Attenuator, l-slot, FC Optic Connectors, single-mode fiber	
	8800	Optical Attenuator, dual slot, FC Optic Connectors, 1200-1700 nm wavelength, single-mode fiber	
Controller	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Option 01T } \\ \text { installed/uninstalled } \end{array} \\ \hline \end{array}$	Control up to 12-1260 Series switch cards or Adapt-a-Switch plug-ins. Register based for high-speed switching. Message-based for programming. IEEE-488 and SCPI.	Not compatible with Option 01 syntax.

Product Selection Guide

1261B VXI Chassis

- High Reliability; Ease of Maintenance
- Best Power and Cooling in VXI Chassis

1260-100 and 1260-101 Adapt-a-Switch ${ }^{\oplus}$ Platforms

- Modular VXI Switch Carrier
- High Density

The revolutionary Adapt-a-Switch ${ }^{\oplus}$ Platform delivers unprecedented density and flexibility in either a one-slot or a two-slot, C-size VXIbus module. The former carrier accommodates up to two plug-in switch cards, while the latter accommodates up to six plug-in switch cards providing optimum switching solutions. The plug-ins are inserted easily and directly from the front panel of the carrier without removing the carrier module from the chassis, allowing ease of maintenance and upgradeability. Switching configurations are expandable through the use of a shared analog bus. Switching solutions include RF, microwave, signal, matrix and multiplexer as well as power and discrete.

Other Products and Services

Series 1250 GPIB Programmable Switching System
One of the first modular GPIB programmable switching systems, the model $\mathbf{1 2 5 0}$ has been the work horse of the industry. It accepts up to 5 switch plug-in cards in any combination. Modules are available to switch signals for applications such as microwave, RF, audio, high-voltage, highcurrent, low-level, and video.

ANSI Standard Modular Instruments

- Programmable Bus Emulator, Programmable Digital Test Module, Serial Emulator
- Legacy Instrument Replacements

Racal Instruments is the exclusive distributor of products manufactured by C\&H Technologies and Talon Instruments. With the newly acquired products, Racal Instruments has expanded its offerings to include Carrier, Source, Measurement, Switching, Prototyping and Digital Modules for a variety of platforms including VXI, PXI, VME, and CPCI. The mezzanine approach reduces total system cost, increases I/O capability per slot, and facilitates the reuse of carriers in new applications. Legacy instruments can be replaced using mezzanine instruments and an intelligent carrier.

System Integration - Modular ATE System Design Turnkey Solutions

Our advanced Freedom ${ }^{\mathrm{TM}}$ Series of functional test systems is a revolutionary concept in Automatic Test Equipment (ATE). Freedom lets you test what you want, the way you want. Its open platform design takes advantage of today's advanced
 technology and software to produce a state-of-the-art system that delivers maximum performance that can be updated easily. We share one objective and that is to configure and specify the most precise, economical and optimal solution possible. A variety of software platforms allows test engineers to quickly analyze the test data, share information, and find accurate solutions to their testing and production needs, all in a fully integrated, powerful turnkey system.
We're with you every step of the way. We'll engineer the system, build it, install it, and support it. Our commitment to ISO level quality assures that each system is fully tested for maximum performance and reliability by the same team that designed it for you. The result is the confidence that you have done the very best you can to accelerate your time-to-market as well as control your costs.

Racal Instruments is proud of our commitment to customer satisfaction. We routinely design and manufacture modified standard product offering as well as design and produce application-specific test instruments.

