

Model 2250

Phase Angle Voltmeter

Features:

- 700Vpk Reference and Signal Inputs
- Wide Frequency Response
- Isolated Reference and Signal Inputs
- Up to 86 dB Harmonic Rejection
- Ratio Measurement Capabilities
- Total Harmonic Distortion Capabilities
- DFT and Analysis Calculations
- IEEE-488, Recorder Output

Description:

The Model 2250 Phase Angle Voltmeter, also known as a Digital Analyzing Voltmeter is one of the most versatile AC measurement tools in the market. The instrument employs a microprocessor-based design that combines many of the capabilities of today's network/waveform analyzers in a digital voltmeter configuration.

One touch makes highly accurate ratio measurements in both phase-sensitive and voltage modes; measures percent, Total Harmonic Distortion and the magnitude and phase of selected harmonic; computes the percent deviation of a signal from a selected nominal value, plus more. The magnitude of the signal can be displayed in db (20 log 10) relative to either the reference input or a selected value.

Typical Applications:

•ATE	•Input – Output Impedance Testing
•Harmonic Analysis	•Synchro, Resolver, & Transducer Testing
•Amplifier Gain & Phase	 Transformer Ratio & Phase Tests
•Attenuator Linearity Tests	 Network Transfer Function Analysis
•Accelerometer Testing	•Filter Testing – Insertion Loss, Phase Shift
•Phase Angle Measurements	measurements of Power and Complex
Phase Sensitive Null Detection	Impedance Phasing of Servo Motors
•LVDT – RVDT Measurements	and Servo Systems

SPECIFICATIONS

Item	Specifications
Signal Voltage range	20 mV to 300Vrms* full scale in six ranges.
Maximum signal input	300Vrms, ±400 V dc, total to 700 V peak maximum.
Reference voltage range	2 mV to 300Vrms*, autoranging (no adjustment necessary); \pm 400 V dc, total of 700 V peak maximum.
Signal autoranging	Upranges at approximately 109% of range. Downranges at approximately 10% of range.
Ratio autoranging	Upranges at 160% of range.
	Downranges at 10% of range.
Display	0.56-inch LED main display.
Voltage	4-1/2 digits, 0.005% full range resolution. +0.0° to +359.99° phase lead,
Phase	0.01° resolution or $0.0^{\circ} \pm 180^{\circ}$
	0.01° resolution.
Frequency range, all modes	10 Hz to 100 kHz.
Operating temperature range	10°C to 40°C ambient temperature.
Warm-up time	30 minutes, for rated accuracy. (Depress "CAL" switch after warm-up period.) Calibration for 10 operating frequencies plus TOTAL (AVG) may be stored in nonvolatile memory.
Voltage and ratio accuracy**	Specified at $23^{\circ} \pm 5^{\circ}$ C ambient temperature.

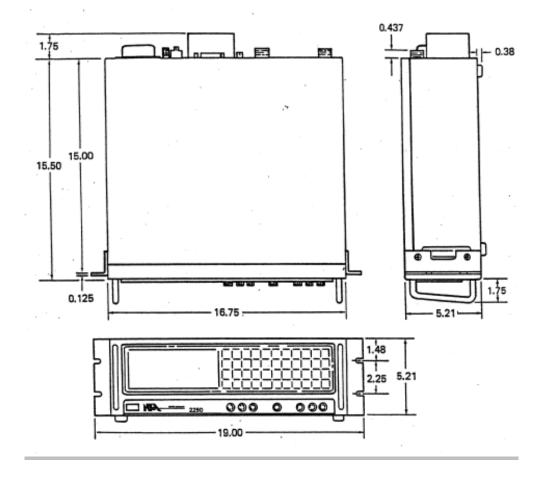
^{*300} V range is actually a 2000 V range with maximum signal limitations of 300 V. Use "2000 V full scale" figures to calculate accuracy specification. DO NOT apply voltages in excess of 300 V.

^{**}Phase sensitive measurements are also affected by phase angle specifications. TOTAL mode voltage and ratio specifications apply within autorange limits only. 35µV TOTAL mode noise specification alters TOTAL mode voltage and ratio accuracy limits on signals measured on 20 mV range.

Item	Specifications
TOTAL (Sum) and Fund Modes	
200V Range and 300V Range	
(% Full Scale + % Reading)	
10 Hz to 30 Hz	$\pm 0.1\%$ FSC + 0.1% rdng
>30 Hz to 1.5 kHz	$\pm 0.05\%$ FSC + 0.1% rdng
>1.5 kHz to 5 kHz	±0.06% FSC + 0.12% rdng
>5 kHz to 20 kHz	$\pm 0.06\%$ FSC + 0.21% rdng
>20 kHz to 32 kHz >32 kHz to 54 kHz	$\pm 0.12\%$ FSC + 0.34% rdng $\pm 0.12\%$ FSC + 0.8% rdng
>54 kHz to 100 kHz	$\pm 0.12\%$ FSC + 0.3% rdng $\pm 0.12\%$ FSC + 1.2% rdng
20 mV	
(% Full Scale + % Reading)	
(
10 Hz to 30 Hz	$\pm 0.15\%$ FSC + 0.05% rdng
>30 Hz to 1.5 kHz >1.5 kHz to 5 kHz	$\pm 0.10\%$ FSC + 0.05% rdng $\pm 0.12\%$ FSC + 0.06% rdng
>1.5 kHz to 20 kHz	$\pm 0.12\%$ FSC + 0.00% rdng $\pm 0.18\%$ FSC + 0.12% rdng
>20 kHz to 32 kHz	$\pm 0.15\%$ FSC + 0.12% rdng
>32 kHz to 54 kHz	±0.15% FSC + 0.5% rdng
>54 kHz to 100 kHz	$\pm 0.15\%$ FSC + 0.75% rdng
All Other Ranges	
(% Full Scale + % Reading)	
10 Hz to 30 Hz	±0.1% FSC + 0.05% rdng
>30 Hz to 1.5 kHz	$\pm 0.05\%$ FSC + 0.05% rdng
>1.5 kHz to 5 kHz	$\pm 0.06\%$ FSC + 0.06% rdng
>5 kHz to 20 kHz	$\pm 0.06\%$ FSC + 0.12% rdng
>20 kHz to 32 kHz >32 kHz to 54 kHz	±0.12% FSC + 0.19% rdng ±0.12% FSC + 0.50% rdng
>54 kHz to 100 kHz	$\pm 0.12\%$ FSC + 0.75% rdng
IN PHASE Mode	
	 cations above + FUND x_[cos θ cos (θ-φ)]
Same as TOTAL (Sum) and FUND specifications above + FUND x $[\cos \theta \cos (\theta - \phi)]$	
e.g., ± 0.12% FSC	+ 1.2% rdng + FUND x $[\cos \theta \cos (\theta - \phi)]$
where: θ=Phase angle of input signal φ=Phase angle accuracy at input frequency	
QUAD Mode	
Same as TOTAL (Sum) and FUND specifications above + FUND x [sin θ -sin (θ - ϕ)]	
e.g., ± 0.12% FSC	+ 1.2% rdng + FUND x [sin θ -sin (θ - ϕ)]
where: θ =Phase angle of input signal	
φ=Phase angle accuracy at input frequency	

	Item		Specifications
Total (AVG) N	Iode		
		•	
<u>TC</u>	DTAL (Avg)	<u>0 to 1/2 Scale</u>	> <u>1/2 Scale to FSC</u>
	Hz to 10 kHz kHz to 30 kHz	0.25% FSC 0.125% FSC 0.25% FSC	0.5% reading 0.25% reading 0.5% reading
>30	kHz to 100 kHz	0.50% FSC Reference input voltage 2mVrms to 300Vrms co	
Ratio range	Full Scale Ratio	Autorange Uprange Point	Maximum Display
.01 R .1 R 1 R 10 R 100 R 1000 R	10.000 x 10 ⁻³ 100.00 x 10 ⁻³ 1.0000 10.000 100.00 1000.0	16.000 160.000 1.6000 16.000 160.00	99.999 x 10 ⁻³ 999.99 x 10 ⁻³ 9.9999 99.999 999.99 999.99

Specifications	
NOTE flags excessive ratio when not in autorangin s always autorange when in ratio mode.	ng mode.
@23 \pm 5°C ambient temperature whe V ref = The actual voltage applied to displayed by going out of Ratio mod READ REF.)	re: the REF input. (This may be and into TOTAL and
V rng = The reference voltage range range is annunciated when the refere described above.)	
R rng = ratio range	
$\mathbf{R} = $ ratio tolerance	
200 V Range and 300 V Range	All Other Ranges
$\mathbf{R} = (0.0020 \ \mathrm{R_{rng}}) \underbrace{\mathrm{Vrng}}_{\mathrm{Vref}}$	$R = (0.0020 R_{rng}) \frac{Vrng}{Vref}$
+ 0.0020 x Reading	+ 0.0010 x Reading
$\mathbf{R} = (0.0010 \ \mathbf{R}_{\rm rng}) \frac{\rm Vrng}{\rm Vref}$	$R = (0.0010 R_{rmg}) \frac{Vrng}{Vref}$
+ 0.0020 x Reading	+ 0.0010 x Reading
$R = (0.0012 R_{rng}) \frac{Vrng}{Vref}$	$R = (0.0012 R_{rng}) \frac{Vrng}{Vref}$
+ 0.0024 x Reading	+ 0.0012 x Reading
$R = (0.0012 \ R_{mg}) \frac{Vrng}{Vref}$	$R = (0.0012 R_{rng}) \frac{Vrng}{Vref}$
+ 0.0042 x Reading	+ 0.0024 x Reading
$R = (0.0024 R_{rng}) \frac{Vrng}{Vref}$	$R = (0.0024 R_{rng}) \frac{Vrng}{Vref}$
+ 0.0068 x Reading	+ 0.0038 x Reading
$R = (0.0024 R_{rng}) \frac{Vrng}{Vref}$	$R = (0.0024 R_{rng}) \frac{Vrng}{Vref}$
+ 0.0160 x Reading	+ 0.0100 x Reading
$R = (0.0024 R_{rng}) \frac{Vrng}{Vref}$	$R = (0.0024 R_{rng}) \frac{Vrng}{Vref}$
	NOTE flags excessive ratio when not in autorangins always autorange when in ratio mode. $\begin{array}{l} @23 \pm 5^{\circ}\text{C} \text{ ambient temperature when V ref} = \text{The actual voltage applied to displayed by going out of Ratio models} \\ \text{W ref} = \text{The actual voltage range range is annunciated when the reference voltage range is annunciated when the reference described above.)} \\ \text{R rng} = \text{The reference voltage range range is annunciated when the reference described above.)} \\ \text{R rng} = \text{ratio range} \\ \text{R} = \text{ratio tolerance} \\ \hline 200 \text{ V Range and } 300 \text{ V Range} \\ \hline \text{R} = (0.0020 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0020 \text{ x Reading} \\ \text{R} = (0.0010 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0020 \text{ x Reading} \\ \text{R} = (0.0012 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0024 \text{ x Reading} \\ \text{R} = (0.0012 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0042 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0068 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 \text{ x Reading} \\ \text{R} = (0.0024 \text{ R}_{\text{rng}}) \frac{\text{Vrng}}{\text{Vref}} \\ + 0.0160 x Re$


Item	Specifications
IN PHASE RATIO	
Add the following to specification (R) listed above:	$R + \frac{\text{SIG FUND}}{\text{REF FUND}} x \mid [\cos \theta - \cos(\theta - \phi)] \mid$
QUAD RATIO	
Add the following to specification (R) listed above:	$R + \frac{SIG \ FUND}{REF \ FUND} x \mid [\cos \theta - \cos(\theta - \phi)] \mid$
where: $R = Total$ (SUM) and FUND mode ra $\theta = Phase$ angle of input signal $\varphi = Phase$ angle accuracy at input sig	
Orthogonality	
10 Hz to 30 Hz >30 Hz to 5.0 kHz	${}^{\pm}$ 0.10° ${}^{\pm}$ 0.05°
>5.0 kHz to 100 kHz	<u>f (in kHz)</u> degrees 100
0 Volt input accuracy	Equal to full scale accuracy spec.
Total mode noise, 20 mV range	35μV maximum.
Nulling sensitivity	$1 \mu V$
Phase angle accuracy	Accuracy specifications apply in "Autorange" only.
10 Hz to 30 Hz >30 Hz to 5 kHz	$\pm 0.10^{\circ} \pm 0.05^{\circ}$
>5 kHz to 100 kHz	<u>f (in kHz)</u> degrees 100
Harmonic rejection	2nd Harmonic: -60 dB
(Fundamental and phase sensitive modes)	3rd Harmonic: -80 dB
	All high order harmonics at fundamental frequency of 400 Hz: -86 dB

Item	Specifications
Total harmonic distortion	Harmonics evaluated:
Frequency of fundamental	2nd to 30th
10 Hzto3.159 kHz3.16 kHzto10.599 kHz10.6 kHzto28.499 kHz28.5 kHzto100 kHz	2nd to 30th 2nd to 10th 2nd and 3rd None
THD accuracy (For fundamental frequency of 10 Hz to 10 kHz)*	For THD readings ≥2%: ±0.015 x reading
	For THD readings <2%: ±[0.03 + (0.015 x <u>VSCALE</u>)] ERMS
	where: VSCALE is the voltage scale annunciated ERMS is the signal voltage
THD range of evaluation	0.00% to 999.99%
THD method of evaluation	The 2250 DAV evaluates THD relative to the fundamental by using the harmonics evaluated at the frequency of interest in accordance with the table above and the following formula:
THD formula	
	$THD = \sqrt{\frac{(Ef2)^2 + (Ef3)^2 + \dots (Efn)^2}{Ef1}}$
	where:
	 Ef1 = true rms voltage of fundamental. Ef2 = true rms voltage of the second harmonic. Efn = true rms voltage of the highest harmonic evaluated for that particular fundamental frequency, per table above.

* See "Harmonics Evaluated" above. Measurements of signals containing high amplitude harmonics of higher orders than those evaluated may incur additional error.

Item	Specifications
THD display	THD may be displayed as percent or in decibels relative to the fundamental.
Random noise measurement	Excluded, as it is not an element of Total Harmonic Distortion.
Harmonic phase:	
Method of measurement	The phase of the selected harmonic component is measured relative to the fundamental of that signal. In READ REF mode, phase angle of the selected harmonic component of the reference is measured relative to the fundamental component of the reference.
Accuracy	The phase accuracy (related to the phase of the fundamental) is n times the fundamental phase specification, where n equals the harmonic order.
Harmonic amplitude	Harmonic amplitude accuracy is equal to the fundamental accuracy specification times n, where n equals the harmonic order.
Filters	The signal and reference channel precision filters allow signals rich in harmonics (including square waves) to be evaluated for fundamental frequency phase-sensitive parameters.
Filters switched in	Filters are automatically switched in when in "FUND", "IN PHASE", "QUAD", and "PHASE ANGLE" modes.
Filters switched out	Filters are automatically switched out when in "TOTAL", or "THD" modes and during all harmonic measurements.
Frequency readout accuracy: 10 Hz to 100 Hz 100 Hz to 100 kHz	±2 % ±0.5%
Signal input impedance	2 Megohms shunted by 180 pf (typical).
Reference input impedance	2 Megohms shunted by 180 pf (typical).

Item	Specifications
Common mode rejection (20 mV range, zero source impedance)	
10 Hz to 999 Hz 1 kHz to 5 kHz >5 kHz to 32 kHz >32 kHz to 54 kHz	126 dB minimum 110 dB minimum 100 dB minimum 91 dB minimum
Trigger input	TTL compatible input, negative edge triggered. Minimum pulse width is 30nSec.
*Recorder output for DAV equipped with I/O board	Separate inphase and quadrature outputs are provided.
Range	Full scale equals ±2.00 V dc.
Accuracy	\pm .05% of full scale added to specification for mode, range, and frequency.
Resolution	1 mV nominal.
Power requirements	115/230Vrms ±15%, 47 to 67 Hz, 70 VA
Fuse	2 A for 115 V operations.1 A for 230 V operations (included in separate bag marked "for 230V operation").
Connectors:	Туре
Front SIG input Front REF input Rear SIG input Rear REF input Trigger input Recorder output Remote Interface Power input	5 way binding post 5 way binding post MS3102A14S-2P MS3102A14S-2P BNC female MS3102A14S-2S IEEE-488 standard connector IEC standard 115/230 V connector
Operating Position	Horizontal
Maximum tilt angle	$\pm 30^{\circ}$
Dimensions	5-1/4" x 16-3/4" x 19"D
Weight	35 pounds (15.9 kg)

Ordering Information

To order, select one of the part numbers shown below.

Part Number	Instrument Description
2250-F1	. Version "F1" utilizes Native IEEE Interface (Standard Version)
2250-F2	Version "F2" utilizes MATE-CIIL and Native IEEE Interface
2250-F3	Version "F3" Emulates NAI Model 225 IEEE Interface

631.567.1100/631.567.1823 (fax) www.naii.com / e-mail:sales@naii.com