## NI SCXI-1121, NI SCXI-1122

- Isolated analog inputs
- Isolated voltage and current excitation
- Signal inputs from millivolts to ±250 V
- Lowpass filtering
- Shunt calibration
- NI-DAQ driver software simplifies configuration, measurements, and scaling

### SCXI-1121

- 4 isolated input channels
- 4 isolated excitation channels
- 250 V<sub>rms</sub> working isolation per channel
- Offset nulling and shunt calibration with SCXI-1321

### SCXI-1122

- 16 channels
- 100 S/s (4 kHz filter), 1 S/s
- (4 Hz filter)
- 2 excitation sources
   480 V<sub>rms</sub> working isolation per channel

## **Operating Systems**

• Windows 2000/NT/XP

#### Recommended Software • LabVIEW

- LabWindows/CVI
- Measurement Studio
- VI Logger

### Driver Software • NI-DAQ 7



## **Overview**

The National Instruments SCXI-1121 and SCXI-1122 modules are designed for a wide variety of sensor and signal inputs requiring isolation. The NI SCXI-1121 offers independent jumper-configurable isolation amplifiers, filters, and excitation sources for each channel. The SCXI-1122 offers an isolation amplifier, filter, and excitation source for all channels. Both SCXI-1121 and SCXI-1122 modules offer at least 250 V<sub>rms</sub> working isolation and can acquire strain, RTD, thermocouple, millivolt, volt, 250 V, 0 to 20 mA, and 4 to 20 mA current input signals. Both modules can multiplex their channels into a single channel of the controlling DAQ device. The SCXI-1121 also offers parallel-mode operation. If you are specifically interested in strain measurements, consider using the NI SCXI-1520 Universal Strain Gauge Input Module. For thermocouple measurements, consider using the NI SCXI-1102 Thermocouple Input Module. For RTD measurements, consider using the SCXI-1102 in combination with the SCXI-1581 Current Excitation Module or the PXI-4070 DMM with SCXI-1127 switch.

## Analog Input SCXI-1121

The analog inputs of the SCXI-1121 consist of four isolated instrumentation amplifiers. You can configure each channel independently using jumpers for input ranges of  $\pm 2.5$  mV to  $\pm 5$  V. You can extend the input range for each channel to  $\pm 250$  VDC/ $\pm 250$  VAC with the SCXI-1327 terminal block. Each channel also includes a lowpass filter that you can configure using jumpers for 4 Hz or 10 kHz. You can sample channels at a rate up to 333 kS/s (3 µs per channel in multiplexed mode). Each channel offers transducer-specific features such as bridge completion, configurable voltage and current

excitation, bridge balancing, and shunt calibration depending on the configured terminal block. Each channel is individually isolated with a working voltage limit of 250 V<sub>rms</sub> between channels or channel to earth. Finally, the SCXI-1121 is CE certified as double insulated, Category II, for 250 V<sub>rms</sub> of operational isolation.

## SCXI-1122

The SCXI-1122 consists of 16 relay multiplexers that route the input channels to a single isolated instrumentation amplifier and lowpass filter. You can program all inputs together for a range of ±5 mV to ±250 V. You can program the lowpass filter setting for all input channels for either 4 Hz or 4 kHz. With this relay multiplexer architecture, you are limited to a maximum sampling rate of 100 S/s for the 4 kHz filter setting, and 1 S/s for the 4 Hz filter setting on all channels in your scan list. Thus, the SCXI-1122 is not intended to be used for the scanning of multiple channels. It should be used to acquire multiple samples from a single channel before acquiring from the next channel. This module also offers cold-junction compensation, bridge completion, and a single voltage and current excitation source with remote sensing. You can configure the SCXI-1122 for 4-wire scanning mode, accepting up to eight 5 k devices. You can also connect up to 16 devices in series. Each channel is individually isolated with a working common-mode voltage of 250  $V_{rms}$  between channels or 480  $V_{rms}$ channel to earth. Finally, the SCXI-1122 is CE certified as double insulated, Category II, for 250  $\mathrm{V}_{\mathrm{rms}}$  of operational isolation.

| SCXI Module | Bridge | RTD | Thermocouple | ±2.5 mV | ±5 mV<br>to ± 250 V | 0 to 20 mA<br>4 to 20 mA |
|-------------|--------|-----|--------------|---------|---------------------|--------------------------|
| SCXI-1121   | 1      | 1   | 1            | 1       | 1                   | 1                        |
| SCXI-1122   | 1      | 1   | 1            | -       | 1                   | 1                        |

Table 1. Signal Compatibility

Data Acquisition and Signal Conditioning

## **Cold-Junction Compensation**

Both the SCXI-1121 and SCXI-1122 can read the cold-junction sensor from a compatible terminal block that offers a cold-junction sensor. In multiplexed mode, both modules must read the sensor as a separate analog input operation. This is usually done before the start of a continuous acquisition. For thermocouple measurements, the SCXI-1102, 1112, and 1125 an sample the cold-junction sensor in the same scan as the thermocouples, to provide better accuracy.

## Transducer Conditioning SCXI-1121

The SCXI-1121 offers a jumper-configurable, isolated excitation source for each analog input channel. You can independently configure each excitation source for 3.33 V, 10 V, 0.15 mA, or 0.45 mA with jumpers for each setting. With this architecture, you can select from 120 or 350 bridge-based transducers, 100 RTDs, or up to 10 k thermistors on a per-channel basis. Each channel also includes a jumper-configurable internal half-bridge completion circuitry for half and quarter-bridge measurements.

With the SCXI-1321, you can manually null the offset of bridges with potentiometers and perform shunt calibration of strain gauges. The SCXI-1321 includes four software programmable switches that connect a socketed 301 k shunt resistor across the transducer elements.

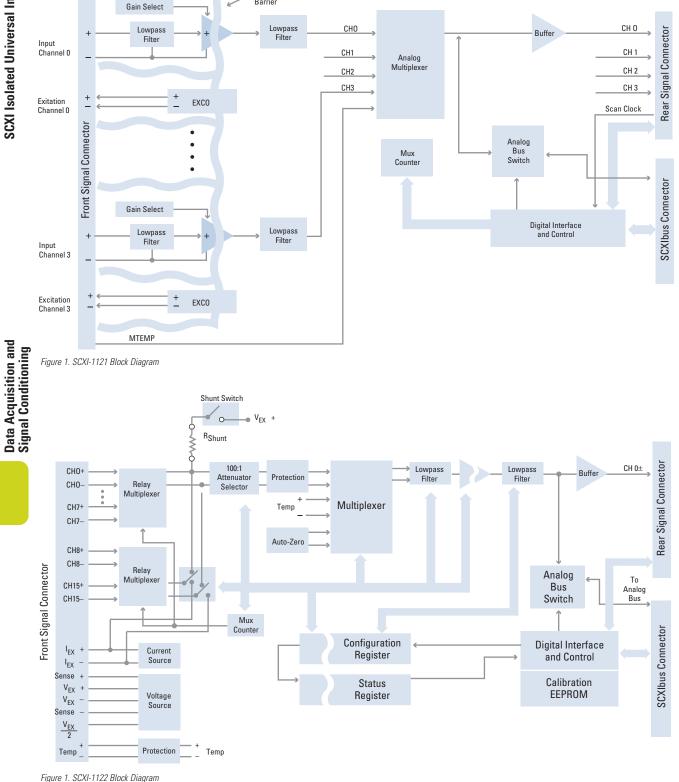
SCXI-1122

The SCXI-1122 offers only one voltage and one current excitation channel for transducers such as RTDs, thermistors, and bridge-based

transducers. The isolated voltage excitation channel is a 3.333 V source with internal half-bridge completion and a single remote sensing terminal to help reduce lead resistance effects. The SCXI-1122 also includes software-controlled shunt calibration capabilities for bridge transducers. When activated, the module switches a 301 k shunt resistor, R<sub>SHUNT</sub>, across one arm of the bridge, from the positive input to V<sub>EX+</sub>. The shunt resistor is socketed for easy replacement.

The isolated current excitation channel is a 1.0 mA source. This source can drive fifteen 100 devices, such as RTDs, connected in series. You can also configure the SCXI-1122 for 4-wire scanning mode. When configured for 4-wire scanning mode, the current source can drive up to eight 5 k devices, such as thermistors, and still maintain electrical isolation between transducers. The SCXI-1122 is intended for use in low-speed, static (DC) measurements, not dynamic measurements.

## Calibration


Each channel of the SCXI-1121 has offset potentiometers so you can calibrate each channel manually. The SCXI-1122 contains calibration hardware to null-out error sources. With automatic input zeroing, software programmable analog switches ground the inputs of the instrumentation amplifier for offset error calibration. An onboard EEPROM stores the calibration constants for each channel for each input range in a user-defined area. The EEPROM also stores a set of factory calibration constants in permanent memory, and cannot be modified. NI-DAQ driver software transparently uses the calibration constants to correct for gain, offset, and excitation source errors.

|                    | 1   | <b>120</b> Ω ( <b>3.33 \</b> | /)*  | 3   | 50 Ω (10 V)* |      | 3   | 50 Ω (3.33 V) | •    | RTDs                    | Thermi     | stors   |
|--------------------|-----|------------------------------|------|-----|--------------|------|-----|---------------|------|-------------------------|------------|---------|
| SCXI Module        | 1/4 | 1/2                          | Full | 1/4 | 1/2          | Full | 1/4 | 1/2           | Full | <b>100</b> Ω            | < 5 kΩ     | < 10 kΩ |
| SCXI-1121          |     | 4                            | 4    | 4   | 4            | -    | 4   | 4             | 4    | 4                       | 4          | 4       |
| SCXI-1122          | 16  | 16                           | 8    | -   | -            | -    | 16  | 16            | 16   | 16 (series), 8 (4-wire) | 8 (4-wire) | -       |
| *Bridge Transducer |     |                              |      |     |              |      |     |               |      |                         |            |         |

Table 2. Channel Densities for Various Transducer Configurations

Isolation Barrier





| Terminal Block | Part Number | Туре            | CJ Sensor | Compatible Modules | Cabling     | Special Functions                | Page |
|----------------|-------------|-----------------|-----------|--------------------|-------------|----------------------------------|------|
| SCXI-1320      | 777687-20   | Screw terminals | ~         | SCXI-1121          | _           | _                                | 329  |
|                |             | Front-mounting  |           | 00/4 1121          |             |                                  |      |
| SCXI-1321      | 777687-21   | Screw terminals | ~         |                    | _           | Offset nulling and shunt         | 329  |
|                |             | Front-mounting  |           |                    |             | calibration for strain gauges    |      |
| SCXI-1327      | 777687-27   | Screw terminals | ~         |                    | _           | Extended voltage input           | 329  |
|                |             | Front-mounting  |           |                    |             | range (to 250 V <sub>rms</sub> ) |      |
| SCXI-1328      | 777687-28   | Screw terminals | ~         |                    | _           | Isothermal construction          | 329  |
|                |             | Front-mounting  |           |                    |             |                                  |      |
| SCXI-1322      | 777687-22   | Screw terminals | ~         |                    | _           | _                                | 329  |
|                |             | Front-mounting  |           |                    |             |                                  |      |
| SCXI-1305      | 777687-05   | BNC connectors  | -         | SCXI-1122          | _           | BNC connectors                   | 328  |
|                |             | Front-mounting  |           | 00/11/22           |             | AC coupling (configurable        |      |
|                |             |                 |           |                    |             | per channel)                     |      |
| TBX-1328       | 777207-28   | Screw terminals | -         | SCXI-1121          | SH32-32A    | DIN rail mount                   | 331  |
|                |             | DIN-rail mount  |           |                    | (183230-01) | Isothermal construction          |      |
| TBX-1329       | 777207-29   | Screw terminals | -         |                    | SH32-32A    | DIN rail mount                   | 331  |
|                |             | DIN-rail mount  |           |                    | (183230-01) | AC/DC coupling                   |      |
|                |             |                 |           |                    |             | Removable screw terminals        |      |
| SCXI-1330      | 777687-30   | Solder pins     | -         |                    | _           | Low-cost connector and           | 330  |
|                |             | Front-mounting  |           |                    |             | shell assembly                   |      |

Table 3. Terminal Block Options for SCXI-1121 and SCXI-1122

## **Ordering Information**

| NI SCXI-1121 | 776572-21 |
|--------------|-----------|
| NI SCXI-1122 | 776572-22 |

### Accessories SCXI current resistors (4-pack) ......776582-01

For information on extended warranty and value-added services, see page 20.

## **BUY ONLINE**!

Visit ni.com/info and enter scxi1121 and/or scxi1122.

See page 276 to configure your complete SCXI system.

**SCXI Isolated Universal Input** 

## **Specifications**

Maximum for 25 °C unless otherwise noted

#### **Complete Accuracy Table**

| -         | -                                 |               |           |            |         |          | System Noise (Pe | eak, 3 Sigma)* |         | Temperatu  | re Drift    |
|-----------|-----------------------------------|---------------|-----------|------------|---------|----------|------------------|----------------|---------|------------|-------------|
|           |                                   |               | Percent o | f Reading* |         | Sing     | le Point         | Ave            | rage    | Percent of |             |
| Module    | Nominal Range* <sup>2</sup>       | Overall Gain* | Typical   | Max        | Offsett | 4 Hz     | 10 kHz           | 4 Hz           | 10 kHz  | Reading/°C | Offset (°C) |
| SCXI-1121 | ±250 V <sub>ms</sub> <sup>3</sup> | 0.012         | 0.2548    | 0.6498     | 0.5 V   | 74.4 mV  | 709 mV           | 14.4 mV        | 151 mV  | 0.0029     | 22.0 mV     |
|           | ±250 V <sup>3</sup>               | 0.022         | 0.2548    | 0.6498     | 250 mV  | 33.6 mV  | 336 mV           | 7.28 mV        | 77.0 mV | 0.0029     | 11.0 mV     |
|           | ±100 V <sup>3</sup>               | 0.052         | 0.2548    | 0.6498     | 100 mV  | 13.0 mV  | 146 mV           | 2.91 mV        | 32.4 mV | 0.0029     | 4.4 mV      |
|           | ±50 V <sup>3</sup>                | 0.12          | 0.2548    | 0.6498     | 50 mV   | 6.48 mV  | 71.1 mV          | 1.46 mV        | 17.2 mV | 0.0029     | 2.2 mV      |
|           | ±25 V <sup>3</sup>                | 0.22          | 0.2548    | 0.6498     | 25 mV   | 3.75 mV  | 43.3 mV          | 728 µV         | 11.5 mV | 0.0029     | 1.12 mV     |
|           | ±10 V <sup>3</sup>                | 0.52          | 0.2548    | 0.6498     | 10 mV   | 1.3 mV   | 15.2 mV          | 293 µV         | 3.39 mV | 0.0029     | 460 µV      |
|           | ±5 V                              | 1             | 0.2478    | 0.6478     | 5.0 mV  | 625 µV   | 6.34 mV          | 144 µV         | 1.52 mV | 0.0027     | 240 µV      |
|           | ±2.5 V                            | 2             | 0.2478    | 0.6478     | 2.5 mV  | 352 µV   | 3.40 mV          | 70.3 µV        | 771 µV  | 0.0027     | 130 µV      |
|           | ±1 V                              | 5             | 0.2478    | 0.6478     | 1.0 mV  | 138 µV   | 1.32 mV          | 28.4 µV        | 311 µV  | 0.0027     | 64 µV       |
|           | ±500 mV                           | 10            | 0.2478    | 0.6478     | 508 µV  | 67.3 µV  | 609 µV           | 15.6 µV        | 154 µV  | 0.0027     | 42 µV       |
|           | ±250 mV                           | 20            | 0.2478    | 0.6478     | 258 µV  | 35.1 µV  | 371 μV           | 7.23 μV        | 83.4 µV | 0.0027     | 31 µV       |
|           | ±100 mV                           | 50            | 0.2478    | 0.6478     | 108 µV  | 13.3 µV  | 129 µV           | 2.86 µV        | 31.9 µV | 0.0027     | 24.4 µV     |
|           | ±50 mV                            | 100           | 0.2478    | 0.6478     | 58 µV   | 6.65 µV  | 70.0 μV          | 1.44 µV        | 16.0 µV | 0.0027     | 22.2 µV     |
|           | ±25 mV                            | 200           | 0.2478    | 0.6478     | 33 µV   | 3.04 µV  | 36.2 µV          | 0.704 µV       | 9.44 µV | 0.0027     | 21.1 µV     |
|           | ±20 mV                            | 250           | 0.2478    | 0.6478     | 28 µV   | 2.60 µV  | 37.8 μV          | 0.573 µV       | 9.85 µV | 0.0027     | 20.7 µV     |
|           | ±10 mV                            | 500           | 0.2478    | 0.6478     | 18 µV   | 1.43 µV  | 20.6 µV          | 0.303 µV       | 5.60 µV | 0.0027     | 20.4 µV     |
|           | ±5 mV                             | 1,000         | 0.2478    | 0.6478     | 13 µV   | 0.681 µV | 17.3 µV          | 0.170 µV       | 4.35 μV | 0.0027     | 20.2 µV     |
|           | ±2.5 mV                           | 2,000         | 0.2478    | 0.6478     | 11 µV   | 0.488 µV | 16.3 µV          | 0.119 µV       | 3.74 μV | 0.0027     | 20.1 µV     |

\*Absolute Accuracy (15 to 35 °C). Absolute accuracy is (voltage reading) x (% of Reading) + (offset error) + (system noise). To include the effects of temperature drift outside the range 15 to 25 °C, add the term AT x (Gain drift) x (Range) + AT x (Offset Drift), where AT is temperature difference between the module temperature and 15 or 35 °C, whichever is smaller. Bandwidth setting is 10 Hz and Scan rate for 100-point averages is 200 scans/s. <sup>1</sup>V<sub>ms</sub> refers to sinusoidal waveform; V refers to DC or AC peak. <sup>2</sup> With SCXI-1327 high-voltage terminal block. <sup>3</sup>Voltage is limited to 42 V<sub>ms</sub> if using the SCXI-1305 terminal block. To calculate absolute accuracy for the SCXI-1121 refer to page 194 or visit **ni.com/accuracy** 

4 Hz

Offsett

**Single Point** 

|                                          | Module    | Nominal Range         |
|------------------------------------------|-----------|-----------------------|
| Ð                                        | SCXI-1122 | ±250 V <sub>rms</sub> |
| and<br>ing                               |           | ±250 V                |
| i i i                                    |           | ±200 V                |
| <u>ē</u> <u>ē</u>                        |           | ±100 V                |
| E E                                      |           | ±50 V                 |
| nd                                       |           | ±20 V                 |
| БŚ                                       |           | ±10 V                 |
| 20                                       |           | ±5 V                  |
| a                                        |           | ±2 V                  |
| ata Acquisition an<br>ignal Conditioning |           | ±1 V                  |
| Si Ö                                     |           | ±500 mV               |
|                                          |           |                       |

| ±250 V <sub>rms</sub> | 0.01  | 0.1528 | 0.1528 | 270 mV  | 29.8 mV  | 142 mV  | 5.9 mV  |
|-----------------------|-------|--------|--------|---------|----------|---------|---------|
| ±250 V                | 0.02  | 0.1528 | 0.1528 | 137 mV  | 14.9 mV  | 71.2 mV | 2.95 mV |
| ±200 V                | 0.05  | 0.1528 | 0.1528 | 55.1 mV | 5.96 mV  | 28.5 mV | 1.18 mV |
| ±100 V                | 0.1   | 0.1528 | 0.1528 | 27.7 mV | 2.98 mV  | 14.2 mV | 591 µV  |
| ±50 V                 | 0.2   | 0.1528 | 0.1528 | 14.0 mV | 1.49 mV  | 7.12mV  | 295 µV  |
| ±20 V                 | 0.5   | 0.1528 | 0.1528 | 5.83 mV | 596 µV   | 2.85 mV | 118 µV  |
| ±10 V                 | 1     | 0.0578 | 0.0578 | 2.75 mV | 298 µV   | 1.43 mV | 59.1 µV |
| ±5 V                  | 2     | 0.0578 | 0.0578 | 1.48 mV | 149 µV   | 712 µV  | 29.5 µV |
| ±2 V                  | 5     | 0.0578 | 0.0578 | 556 µV  | 59.6 µV  | 285 µV  | 11.8 µV |
| ±1 V                  | 10    | 0.0578 | 0.0578 | 282 µV  | 29.8 µV  | 142 µV  | 5.96 µV |
| ±500 mV               | 20    | 0.0578 | 0.0578 | 145 µV  | 14.9 µV  | 127 µV  | 2.95 µV |
| ±200 mV               | 50    | 0.0578 | 0.0578 | 62.8 µV | 5.96 µV  | 112 µV  | 1.74 µV |
| ±100 mV               | 100   | 0.0578 | 0.0578 | 35.4 µV | 2.98 µV  | 56.1 µV | 1.31 µV |
| ±50 mV                | 200   | 0.0578 | 0.0578 | 21.7 µV | 1.49 µV  | 28 µV   | 0.89 µV |
| ±20 mV                | 500   | 0.0578 | 0.0578 | 13.5 µV | 0.596 µV | 11.2 μV | 0.50 µV |
| ±10 mV                | 1,000 | 0.0578 | 0.0578 | 10.7 µV | 0.298 µV | 5.61 µV | 0.25 µV |

Percent of Reading

Max

Typical

Overall Gain\*

2,000 0.0578 0.0578 9.37 µV 0.149 µV 2.8 µV 0.20 µV 0.31 µV 0.0017 0.27 µV \*Absolute Accuracy (15 to 35 °C). Absolute accuracy is (voltage reading) x (% of Reading) + (offset error) + (system noise). To include the effects of temperature drift outside the range 15 to 25 °C, add the term AT x (Gain drift) x (Range) + AT x (Offset Drift), where  $\Delta T$  is temperature difference between the module temperature and 15 or 35 °C, whichever is smaller. Bandwidth setting is 10 Hz and Scan rate for 100-point averages is 200 scans/s. To calculate absolute accuracy for the SCXI-112s refer to page 194 or

#### visit ni.com/accuracy Innut Characteristics

| input Gharat | 5101131103      |
|--------------|-----------------|
| SCXI-1121    | 4 differential  |
| SCXI-1122    | 16 differential |

#### Number of channels

#### Input Coupling

SCXI-1121 DC (or AC with SCXI-1305) SCXI-1122 DC

±5 mV

#### Maximum working voltage

| Module    | Signal + Common-mode                                                                                      |
|-----------|-----------------------------------------------------------------------------------------------------------|
| SCXI-1121 | Each input should remain within 250 V <sub>rms</sub> of ground and any other channel                      |
| SCXI-1122 | Each input should remain within 480 $V_{\rm rms}$ of ground $$ and 250 $V_{\rm rms}$ of any other channel |

#### Overvoltage protection

| Module    | Powered On           | Powered Off          |
|-----------|----------------------|----------------------|
| SCXI-1121 | 250 V <sub>rms</sub> | 250 V <sub>rms</sub> |
| SCXI-1122 | 250 V <sub>rms</sub> | 250 V <sub>rms</sub> |

| Input    |
|----------|
| niversal |
| lated Ur |
| SCXI Iso |

| inputs Frotecteu |          |  |  |  |  |
|------------------|----------|--|--|--|--|
| SCXI-1121        | CH <03>  |  |  |  |  |
| SCXI-1122        | CH <015> |  |  |  |  |
|                  |          |  |  |  |  |

#### **Transfer Characteristics**

~ D. ataatad

| Nonlinearity |                            |                    |
|--------------|----------------------------|--------------------|
| Module       | Percent of Full Scale Rang | е                  |
| SCXI-1121    | ± 0.04                     |                    |
| SCXI-1122    | ± 0.01                     |                    |
|              |                            |                    |
| Offset error |                            | See accuracy table |
| Gain error   |                            | See accuracy table |

System Noise (Peak, 3 Sigma)'

10 kHz

Average

10 kHz

15.8 mV

7.91 mV

3.17 mV

1.58 µV

791 µV

317 uV

158 µV

79.1 µV

31.7 µV

15.8 µV

14.1 µV

12.5 uV

6.23 µV

3.11 µV

1.25 µV

0.62 µV

4 Hz

**Temperature Drift** 

Offset (°C)

15.0 mV

7.5 mV

3.0 mV

1.5 mV

750 µV

300 uV

150 µV

75.2 µV

30.2 µV

15.2 µV

7.7 uV

3.2 uV

1.7 µV

0.95 µV

0.50 µV

0.35 µV

Percent of

Reading/°C

0.0032

0.0032

0.0032

0.0032

0.0032

0.0032

0.0017

0.0017

0.0017

0.0017

0.0017

0.0017

0.0017

0.0017

0.0017

0.0017

For a definition of specific terms, please visit ni.com/glossary.

# **Specifications**

## Amplifier Characteristics

| Input impedan          | ice                      | New         | 10                 | D                                                         |                                       |
|------------------------|--------------------------|-------------|--------------------|-----------------------------------------------------------|---------------------------------------|
| Module                 |                          | Norma       | Al Powered On      | Powered Off / C                                           | Iverload                              |
| SCXI-1121              |                          |             | 1 GΩ               | 50 kΩ                                                     |                                       |
| SCXI-1122 (g           |                          |             | 1 GΩ               | 100 kΩ                                                    |                                       |
| SCXI-1122 (g           | jain<1)                  |             | 1 MΩ               | 100 kΩ                                                    |                                       |
| Input bias curi        | rent                     |             | ±80 pA             | l.                                                        |                                       |
| Input offset cu        | ırrent                   |             |                    |                                                           |                                       |
| SCXI-1121              |                          |             | ±80 p.             | 4                                                         |                                       |
| SCXI-1122              |                          |             | ±80 p.             | 4                                                         |                                       |
| NMR (Normal            | Mode Reje                | ction)      |                    |                                                           |                                       |
| SCXI-1121              |                          |             | 60 dB              | with 4 Hz filter enabled                                  | 1)                                    |
|                        |                          |             |                    | with 4 Hz filter enabled                                  | 1)                                    |
| CMRR (Comm             | on Mode Re               | ejection Ra | tio) (DC to 60 Hz) |                                                           |                                       |
| Module                 | Filter                   | CI          | /IRR 50 or 60 Hz   | _                                                         |                                       |
| SCXI-1121              | 4 Hz                     |             | 160 dB             |                                                           |                                       |
|                        | 10 kHz                   | :           | 100 dB             |                                                           |                                       |
| SCXI-1122              | 4 Hz                     |             | 160 dB             |                                                           |                                       |
|                        | 4 kHz                    |             | 100 dB             | _                                                         |                                       |
| Output range           |                          |             |                    |                                                           |                                       |
|                        |                          |             | + 5 V              |                                                           |                                       |
|                        |                          |             | ± 5 v<br>+ 10 V    |                                                           |                                       |
| Output impeda          |                          |             | ± 10 V             |                                                           |                                       |
| Module                 |                          | exed Mod    | e Parallel Mo      | le                                                        |                                       |
| SCXI-1121              |                          | 00 Ω        | 330 Ω              |                                                           |                                       |
| SCXI-1122              |                          | 75 Ω        | -                  |                                                           |                                       |
| Dunom:-                | Charact                  | oriotio     |                    |                                                           |                                       |
| Dynamic                |                          | eristics    | 5                  |                                                           |                                       |
| Multiplexer pe         | erformance               |             | 0                  |                                                           | · · · · · · · · · · · · · · · · · · · |
| Module                 | Filter C. f              |             | Scan Interva       | al (per channel, any ga<br>Settle to ±0.006% <sup>2</sup> | in setting)<br>Settle to ±0.0015%     |
| SCXI-1121              | Filter Set<br>All settir |             |                    |                                                           |                                       |
| SCXI-1121<br>SCXI-1122 | 4 Hz                     | iys         | 5.2 μs<br>1 s      | 10 µs                                                     | 20 µs                                 |
| 30AF112Z               | 4 HZ<br>4 kHz            |             | -                  | -                                                         | _                                     |
|                        | 4 KHZ                    |             | 10 ms              | -                                                         | -                                     |

|                         |                  |                  | •                              |
|-------------------------|------------------|------------------|--------------------------------|
| System noise            |                  | See sccuracy t   | able                           |
| Filter type             |                  | 3-pole RC        |                                |
| Cutoff frequency (-3dB) |                  |                  |                                |
| SCXI-1121               |                  | 4 Hz, 10 kHz (ju | umper selectable)              |
| SCXI-1122               |                  | 4 Hz, 4 kHz (jur | nper selectable)               |
| Stability               |                  |                  |                                |
| Module                  | Gain Temperature | Coefficient      | Offset Temperature Coefficient |
| 00)// 4404              | 00 /0            | 0                | 1 0 0 000 ( 1 ) 1//00          |

| SCXI-1121          | 20 ppm/°C | (± 0.2 ± 200/gain) μV/°C |
|--------------------|-----------|--------------------------|
| SCXI-1122 (gain≥1) | 10 ppm/°C | (± 0.2 ± 150/gain) μV/°C |
| SCXI-1122 (gain<1) | 25 ppm/°C | (± 0.2 ± 150/gain) μV/°C |

### Excitation

#### **Output Characteristics**

| SCXI-1121 4 (voltage or current)      |
|---------------------------------------|
|                                       |
| SCXI-1122 2 (1 voltage and 1 current) |
| Bridge type Quarter, half, or full    |
| Bridge completion                     |
| SCXI-1121 4 (voltage or current)      |
| SCXI-1122 2 (1 voltage and 1 current) |

| Level Module                     | Excitation Level | Accuracy                |
|----------------------------------|------------------|-------------------------|
| SCXI-1121 (jumper selectable)    | 3.333 V          | ± 0.04%                 |
|                                  | 10 V             | ± 0.2%                  |
| SCXI-1122                        | 3.333 V          | ± 0.04%                 |
| Drift                            | ±40 ppm/°C       |                         |
| Current drive                    |                  |                         |
| SCXI-1121                        |                  | annel, (@ 3.333 V)      |
| SCXI-1121                        |                  | annel, (@ 10 V)         |
| SCXI-1122                        | 225 mA           |                         |
| Current Mode                     |                  |                         |
| Level<br>Module                  | Excitation Level | A                       |
| SCXI-1121 (jumper selectable)    | 0.15 mA          | Accuracy<br>+ 0.04%     |
| SGVI-1151 (Jumper selectable)    | 0.45 mA          | ± 0.04 %                |
| SCXI-1122                        | 1.0 mA           | ± 0.04%                 |
|                                  |                  |                         |
| Drift                            | ±40 ppm/°C       |                         |
| Maximum load resistance          |                  |                         |
| SCXI-1121                        |                  |                         |
| SCXI-1122                        | 5 kΩ             |                         |
| Physical                         |                  |                         |
| Dimensions                       | 3.0 by 17.3 b    | y 20.3 cm               |
|                                  | (1.2 by 6.8 by   | / 8.0 in.)              |
| I/O connectors                   |                  |                         |
| Rear                             |                  | ibbon cable rear connec |
| Front                            | 32-pin male l    | DIN C connector         |
| Environment                      |                  |                         |
| Operating temperature            |                  |                         |
| Storage temperature              |                  |                         |
| Relative humidity                |                  | ncondensing             |
| Certification and Compl          |                  |                         |
| SCXI-1121/1122                   | 250 V, Cat II    | working voltage         |
| European Compliance $(\epsilon)$ |                  |                         |
| EMC                              |                  | oup I Class A, 10m,     |
|                                  | Table 1 Immu     | inity                   |
| Safety                           |                  |                         |
| North American Complianc         |                  |                         |
| EMCFCC Part 15 Class A us        | 0                | 01111                   |
| Safety                           |                  | 2.2 No. 1010.1          |
| Australia & New Zealand C        |                  | 2.2 INU. IUIU.I         |
| EMC                              | •                |                         |

<sup>2</sup> Includes effects of AT-MIO-16X with 1 or 2 m SCXI cable assembly.

For a definition of specific terms, please visit *ni.com/glossary* 

# Multifunction DAQ and SCXI Signal Conditioning Accuracy Specifications Overview

## **Every Measurement Counts**

There is no room for error in your measurements. From sensor to software, your system must deliver accurate results. NI provides detailed specifications for our products so you do not have to guess how they will perform. Along with traditional data acquisition specifications, our E Series multifunction data acquisition (DAQ) devices and SCXI signal conditioning modules include accuracy tables to assist you in selecting the appropriate hardware for your application.

# To calculate the accuracy of NI measurement products,

visit ni.com/accuracy

## Absolute Accuracy

Absolute accuracy is the specification you use to determine the overall maximum tolerance of your measurement. Absolute accuracy specifications apply only to successfully calibrated DAQ devices and SCXI modules. There are four components of an absolute accuracy specification:

- **Percent of Reading** is a gain uncertainty factor that is multiplied by the actual input voltage for the measurement.
- Offset is a constant value applied to all measurements.
- **System Noise** is based on random noise and depends on the number of points averaged for each measurement
- (includes quantization error for DAQ devices).
- Temperature Drift is based on variations in your ambient temperature.
- **Input Voltage** the absolute magnitude of the voltage input for this calculation. The fullscale voltage is most commonly used.

Based on these components, the formula for calculating absolute accuracy is:

Absolute Accuracy = ±[(Input Voltage X % of Reading) + (Offset + System Noise + Temperature Drift)]

Absolute Accuracy RTI<sup>1</sup> = (Absolute Accuracy Input Voltage)  $^{1}$ RTI = relative to input

Temperature drift is already accounted for unless your ambient temperature is outside 15 to 35 °C. For instance, if your ambient temperature is at 45 °C, you must account for 10 °C of drift. This is calculated by:

 $Temperature \ Drift = Temperature \ Difference \ x \ \% \ Drift \ per \ ^C \ \ x \ Input \ Voltage$ 

## Absolute Accuracy for DAQ Devices

Absolute Device Accuracy at Full Scale is a calculation of absolute accuracy for DAQ devices for a specific voltage range using the maximum voltage within that range taken one year after calibration, the Accuracy Drift Reading, and the System Noise averaged value. Below is the Absolute Accuracy at Full Scale calculation for the NI PCI-6052E DAQ device after one year using the  $\pm 10$  V input range while averaging 100 samples of a 10 V input signal. In all the Absolute Accuracy at Full Scale calculations, we assume that the ambient temperature is between 15 and 35 °C. Using the Absolute Accuracy table on the next page, we see that that the calculation for the  $\pm 10$  V input range for Absolute Accuracy at Full Scale yields 4.747 mV. This calculation is done using the parameters in the same row for one year Absolute Accuracy Reading, Offset and Noise + Quantization, as well as a value of 10 V for the input voltage value. You can then see that the calculation is as follows:

Absolute Accuracy =  $\pm [(10 \times 0.00037) + 947.0 \mu V + 87 \mu V] = \pm 4.747 mV$ 

In many cases, it is helpful to calculate this value relative to the input (RTI). Therefore, you do not have to account for different input ranges at different stages of your system.

```
Absolute Acuracy RTI = (\pm 0.004747/10) = \pm 0.0475\%
```

The following example assumes the same conditions except that the ambient temperature is 40 °C. You can begin with the calculation above and add in the Drift calculation using the % Drift per °C from Table 2 on page 196.

Absolute Accuracy = 4.747 mV + ((40 – 35 °C) x 0.000006 /°C X 10 V) =  $\pm 5.047$  mV

Absolute Acuracy RTI =  $(\pm 0.005047/10) = \pm 0.0505\%$ 

## **Absolute Accuracy for SCXI Modules**

Below is an example for calculating the absolute accuracy for the NI SCXI-1102 using the  $\pm 100$  mV input range while averaging 100 samples of a 14 mV input signal. In this calculation, we assume the ambient temperature is between 15 and 35 °C, so Temperature Drift = 0. Using the accuracy table on page 313, you find the following numbers for the calculation:

```
Input Voltage = 0.014
% of Reading Max = 0.02% = 0.0002
Offset = 0.000025 V
System Noise = 0.000005 V
```

Absolute Accuracy =  $\pm [(0.014 \text{ x } 0.0002) + 0.000025 + 0.000005] \text{ V} = \pm 32.8 \,\mu\text{V}$ 

Absolute Accuracy RTI =  $\pm (0.0000328 / 0.014) = \pm 0.234 \%$ 

The following example assumes the same conditions, except the ambient temperature is 40 °C. You can begin with the Absolute Accuracy calculation above and add in the Temperature Drift.

```
Absolute Accuracy = 32.8 \mu V + (0.014 x 0.000005 + 0.000001) x 5 = ±38.15 \mu V
```

```
Absolute Accuracy RTI = \pm (0.00003815 / 0.014) = \pm 0.273 \%
```

Data Acquisition and Signal Conditioning

# Multifunction DAQ and SCXI Signal Conditioning Accuracy Specifications Overview

For both DAQ devices and SCXI modules, you should use the Single-Point System Noise specification from the accuracy tables when you are making single-point measurements. If you are averaging multiple points for each measurement, the value for System Noise changes. The Averaged System Noise in the accuracy tables assumes that you average 100 points per measurement. If you are averaging a different number of points, use the following equation to determine your Noise + Quantization:

System Noise = Average System Noise from table  $x \sqrt{(100/number of points)}$ 

For example, if you are averaging 1,000 points per measurement with the PCI-6052E in the  $\pm 10$  V ( $\pm 100$  mV for the SCXI-1102) input range, System Noise is determined by:

NI PCI-6052E\*\* System Noise= 87.0 0  $\mu V \; x \; \sqrt{(100/1000)} = 27.5 \; 0 \; \mu V$ 

NI SCXI-1102 System Noise= 5  $\mu$ V x SQRT  $\sqrt{(100/1000)} = 1.58 \mu$ V

\*\*The System Noise specifications assume that dithering is disabled for single-point measurements and enabled for averaged measurements.

See page 21 or visit ni.com/calibration for more information on the importance of calibration on DAQ device accuracy.

## **Absolute System Accuracy**

Absolute System Accuracy represents the end-to-end accuracy including the signal conditioning and DAQ device. Because absolute system accuracy includes components set for different input ranges, it is important to use Absolute Accuracy RTI numbers for each component.

Total System Accuracy RTI =  $\pm$ SQRT [ (Module Absolute Accuracy RTI)2 + (DAQ Device Absolute Accuracy RTI)2]

The following example calculates the Absolute System Accuracy for the SCXI-1102 module and PCI-6052E DAQ board described in the first examples:

Total System Accuracy RTI =  $\pm \sqrt{[(0.00273)2 + (0.000505)2]} = \pm 0.278\%$ 

## **Units of Measure**

In many applications, you are measuring some physical phenomenon, such as temperature. To determine the absolute accuracy in terms of your unit of measure, you must perform three steps:

- 1. Convert a typical expected value from the unit of measure to voltage
- 2. Calculate absolute accuracy for that voltage
- 3. Convert absolute accuracy from voltage to the unit of measure

**Note:** it is important to use a typical measurement value in this process, because many conversion algorithms are not linearized. You may want to perform conversions for several different values in your probable range of inputs, rather than just the maximum and minimum values.

For an example calculation, we want to determine the absolute system accuracy of an NI SCXI-1102 system with a NI PCI-6052E, measuring a J-type thermocouple at 100 °C.

- 1. A J-type thermocouple at 100 °C generates 5.268 mV (from a standard conversion table or formula)
- 2. The absolute accuracy for the system at 5.268 mV is  $\pm 0.82\%$ . This means the possible voltage reading is anywhere from 5.225 to 5.311 mV.
- 3. Using the same thermocouple conversion table, these values represent a temperature spread of 99.3 to 100.7 °C.

Therefore, the absolute system accuracy is  $\pm 0.7$  °C at 100 °C.

### **Benchmarks**

The calculations described above represent the maximum error you should receive from any given component in your system, and a method for determining the overall system error. However, you typically have much better accuracy values than what you obtain from these tables.

If you need an extremely accurate system, you can perform an end-to-end calibration of your system to reduce all system errors. However, you must calibrate this system with your particular input type over the full range of expected use. Accuracy depends on the quality and precision of your source.

We have performed some end-to-end calibrations for some typical configurations and achieved the results in Table 1:

To maintain your measurement accuracy, you must calibrate your measurement system at set intervals over time.

## For a current list of SCXI signal conditioning products with calibration services, please visit ni.com/calibration

# Multifunction DAQ and SCXI Signal Conditioning Accuracy Specifications Overview

| Module       | Empirical Accuracy |
|--------------|--------------------|
| SCXI-1102    | ±0.25 °C at 250 °C |
|              | ±24 mV at 9.5 V    |
| SCXI-1112    | ±0.21 °C at 300 °C |
| SCXI-1125    | ±2.2 mV at 2 V     |
| T 1 1 4 D 11 | E :: 14 :: 10 :    |

Table 1. Possible Empirical Accuracy with System Calibration

|              |             | Absolute Accuracy |        |                   |              |            |                   | Relative Accuracy  |              |          |
|--------------|-------------|-------------------|--------|-------------------|--------------|------------|-------------------|--------------------|--------------|----------|
| Nominal Rang | je (V)      | % of Reading      |        | System Noise (mV) |              | Temp Drift | Absolute Accuracy | Resolution (µV)    |              |          |
| Positive FS  | Negative FS | 24 Hours          | 1 Year | Offset (µV)       | Single Point | Averaged   | (%/°C)            | at Full Scale (mV) | Single Point | Averaged |
| 10.0         | -10.0       | 0.0354            | 0.0371 | 947.0             | 981.0        | 87.0       | 0.0006            | 4.747              | 1145.0       | 115.0    |
| 5.0          | -5.0        | 0.0054            | 0.0071 | 476.0             | 491.0        | 43.5       | 0.0001            | 0.876              | 573.0        | 57.3     |
| 2.5          | -2.5        | 0.0354            | 0.0371 | 241.0             | 245.0        | 21.7       | 0.0006            | 1.190              | 286.0        | 28.6     |
| 1.0          | -1.0        | 0.0354            | 0.0371 | 99.2              | 98.1         | 8.7        | 0.0006            | 0.479              | 115.0        | 11.5     |
| 0.5          | -0.5        | 0.0354            | 0.0371 | 52.1              | 56.2         | 5.0        | 0.0006            | 0.243              | 66.3         | 6.6      |
| 0.25         | -0.25       | 0.0404            | 0.0421 | 28.6              | 32.8         | 3.0        | 0.0006            | 0.137              | 39.2         | 3.9      |
| 0.1          | -0.1        | 0.0454            | 0.0471 | 14.4              | 22.4         | 2.1        | 0.0006            | 0.064              | 27.7         | 2.8      |
| 0.05         | -0.05       | 0.0454            | 0.0471 | 9.7               | 19.9         | 1.9        | 0.0006            | 0.035              | 25.3         | 2.5      |
| 10.0         | 0.0         | 0.0054            | 0.0071 | 476.0             | 491.0        | 43.5       | 0.0001            | 1.232              | 573.0        | 57.3     |
| 5.0          | 0.0         | 0.0354            | 0.0371 | 241.0             | 245.0        | 21.7       | 0.0006            | 2.119              | 286.0        | 28.6     |
| 2.0          | 0.0         | 0.0354            | 0.0371 | 99.2              | 98.1         | 8.7        | 0.0006            | 0.850              | 115.0        | 11.5     |
| 1.0          | 0.0         | 0.0354            | 0.0371 | 52.1              | 56.2         | 5.0        | 0.0006            | 0.428              | 66.3         | 6.6      |
| 0.5          | 0.0         | 0.0404            | 0.0421 | 28.6              | 39.8         | 3.0        | 0.0006            | 0.242              | 48.2         | 3.9      |
| 0.2          | 0.0         | 0.0454            | 0.0471 | 14.4              | 22.4         | 2.1        | 0.0006            | 0.111              | 27.7         | 2.8      |
| 0.1          | 0.0         | 0.0454            | 0.0471 | 9.7               | 19.9         | 1.9        | 0.0006            | 0.059              | 25.3         | 2.5      |

Table 2. NI PCI-6052E Analog Input Accuracy Specifications

**Note:** Accuracies are valid for measurements following an internal (self) E Series calibration. Averaged numbers assume averaging of 100 single-channel readings. Measurement accuracies are listed for operational temperatures within  $\pm 1$  °C of internal calibration temperature and  $\pm 10$  °C of external or factory-calibration temperature. One-year calibration interval recommended. The absolute accuracy at full scale calculations were performed for a maximum range input voltage (for example, 10 V for the  $\pm 10$  V range) after one year, assuming 100 point averaging of data.

Data Acquisition and Signal Conditioning