NI AMUX-64T

- 64-channel multiplexer
- mV, V, current, and thermocouple inputs

NI SC-2040

- 8-channel simultaneous sample-and-hold
- mV, V inputs

NI SC-2042-RTD

- 8-channel RTD/thermistor
- RTD, thermistor, mV, V inputs

NI SC-2043-SG

- 8-channel bridge
- Strain, pressure, load torque, mV, V inputs

Operating	Systems
 Windows 2 	2000/NT/XP/Me/9x

Driver Software
NI-DAO

Accessory	Description	Sensor/Signal Type
AMUX-64T	64-channel multiplexer	mV, V, thermocouple
SC-2040	8-channel simultaneous sample-and-hold	mV, V
SC-2042-RTD	8-channel RTD/thermistor accessory	RTD, thermistor
SC-2043-SG	8-channel strain gauge accessory	Strain, bridge-based sensors

Table 1. Accessory Compatibility Guide

Overview

National Instruments offers several different front-end signal conditioning devices for use with E Series and basic multifunction DAQ devices. These devices offer a low-cost solution for applications requiring only one type of signal conditioning.

Connection to the E Series DAQ Device

You can connect each of these accessories directly to all E Series and basic multifunction DAQ devices. See Table 2 for more information on cabling required for each accessory. Cables are sold separately.

Each accessory also offers some special cabling features. The NI AMUX-64T and the SC-2040 include an additional 50-pin breakout cable connector for access to the unused I/O signals of the DAQ device. You can also use this second connector on the AMUX-64T to cascade up to four AMUX-64T devices to a single DAQ device, which thereby expands the analog input capacity of the DAQ device to 256 channels. In addition, you can connect up to four SC-2042-RTD or SC-2043-SG device to a single 603IE, 6033E, 6071E, or AT-MIO-64E-3 with the SC-2056 cable adapter device. See page 488 for details on this configuration.

Power

You can power each of these accessory devices with the 5 VDC supply on the DAQ device. This power is routed automatically through the I/O connector, unless specifically disabled on the accessory. Each device also offers screw terminals for connecting an external 5 VDC power supply. You need an external power supply only when using the SC-2043-SG with a DAQCard, or when using two or more

INFO CODES
For more information,
or to order products online visit <i>ni.com/info</i>
and enter:
amux64t

sc2040

sc2042

sc2043

BUY ONLINE!

SC-2043-SG devices with a single DAQ device. Each device includes a green LED to indicate that the device is powered.

Field Wiring

Signals from the transducers and signal sources connect to screw terminals located on each accessory.

Mounting

You can mount all of these accessories with the rack mount kit. The kit is available in either single or double height, with either an acrylic plastic cover or a metal wrap-around cover. All SC-204x accessories occupy half the width of this rack mount kit, while the AMUX-64T occupies two-thirds of the width. For custom connectivity applications, you can mount the SC-2040, SC-2042-RTD, and SC-2043-SG into the CA-1000 shielded enclosure, described on page 263.

AMUX-64T Analog Input

The AMUX-64T contains 16 CMOS 4 x 1 analog input multiplexers. The analog inputs can operate as 64 single-ended or 32 differential inputs.

Channel Expandability

You can use one AMUX-64T for 64 input channels. You can also connect up to four devices together to provide up to 256 channels. With a single AMUX-64T, four analog input channels are multiplexed to each multifunction DAQ device analog input. With 4-device operation, 16 analog input channels (four from each AMUX-64T) are multiplexed to a single DAQ analog input.

Thermocouple Measurements and Cold-Junction Compensation

A movable jumper connects the temperature sensor of the AMUX-64T to analog input channel 0. An AMUX-64T configured with the temperature sensor connected has channels available for reading the temperature from 60 thermocouples in single-ended mode or 30 thermocouples in differential mode. You can cascade up to four AMUX-64T devices to increase the number of inputs to 240 in single-ended mode or 120 in differential mode. **Note:** National Instruments recommends 16-bit DAQ devices for measuring thermocouples with the AMUX-64T.

SC-2040 Analog Input

Each analog input channel of the SC-2040 has its own instrumentation amplifier with differential inputs. Using DIP switches, you can configure each channel independently for a gain of 1, 10, 100, 200, or 500. Each channel has input overvoltage protection of \pm 30 V powered on and \pm 15 V powered off.

Output

The output of each instrumentation amplifier is routed to a track-and-hold (T/H) amplifier. In track mode, the outputs of the T/H amplifiers follow their inputs. When put into hold mode, the T/H amplifier outputs simultaneously freeze, holding the signal levels constant. You can then digitize these held signals with an E Series device. Therefore, the digitized data includes negligible time skew (less than 50 ns) between channels.

Scan Rates

The maximum scan rate of the SC-2040 depends on the type of E Series device used and the number of channels scanned. Specifically, the minimum scan interval for a particular application is computed as $T_{SR} = T_{aC^q} + n * [max (T_{HLD}, T_{MIO})]$ where T_{aCq} is the SC-2040 acquisition time (7 µs), n is the number of channels scanned on the SC-2040, T_{MIO} is the sampling rate or settling time of the DAQ device, and T_{HLD} is the hold setting time of the SC-2040. For example, a scan of eight channels with a PCI-MIO-16E-1 device that has a 1 µs settling time requires a scan

Accessory	DAQ Device	Cabling
1st AMUX-64T	68-pin E Series (except DAQCards)	SH6868-EP or R6868
	100-pin E Series	SH1006868 or R1005050
	Latching E Series DAQCards:	SHC6868-EP
	6062E, 6024E	
	Nonlatching E Series DAQCards:	PSHR68-68 Shielded Cable
	AI-16E-4, AI-16XE-50	Kit or PR68-68F
Additional AMUX-64T	-	NB1
(up to 3)		(1 per AMUX-64T)
SC-2040	68-pin E Series (except DAQCards)	SH6868-EP or R6868
	100-pin E Series	SH1006868
	Latching E Series DAQCards:	SHC6868-EP
	6062E, 6024E	
	Nonlatching E Series DAQCards:	PSHR68-68 Shielded Cable
	AI-16E-4, AI-16XE-50	Kit or PR68-68F
SC-2042-RTD or	68-pin E Series	SH6850 or R6850
SC-2043-SG	Latching E Series DAQCards:	SHC6868-EP
	6062E, 6024E	and 68M-50F
	Nonlatching E Series DAQCards:	PSHR68-50
	AI-16E-4, AI-16XE-50	
	AT-MIO-16DE-10, 6025E	R1005050 1
	AT-MIO-64E-3, 6031E, 6033E, 6071E	R1005050 1 or
		NB1 to SC-2056 ²
Additional	AT-MIO-64E-3, 6031E, 6033E, 6071E	NB1 to SC-2056 ²
SC-2042-RTD or		
SC-2043-SG (up to 3)		
¹ With the R1005050 cabl 100 pin MIO boards.	e, the SC-2042-RTD connects to pins 1-50	(ACH0-ACH15) only of the
	ur SC-2042-RTD boards or up to four SC-2043	3-SG boards to an SC 2056
	31E, 6033E, or 6071E. You cannot use SC-204	
boards together. See pag	e 488 for configuration details.	

Table 2. Cabling Guide for the AMUX-64T and SC-204x Devices

interval of T_{SR} = 7 μ s+8 * [max (1 μ s,1 μ s)] = 7 μ s+8 μ s=15 μ s, or 66,666 scans/s maximum.

SC-2042-RTD

The SC-2042-RTD is an 8-channel signal conditioning accessory for RTDs or thermistors. Each input channel has an independent 1 mA current excitation source and screw terminals for 4-wire RTD measurements. The RTD signals are routed to the eight differential inputs of the multifuction DAQ device. With the SC-2056 cable adapter accessory, you can use up to four SC-2042-RTDs to interface 32 RTDs to a single 6031E, 6033E, 6071E, or AT-MIO-64E-3 board. See page 256 for details of this configuration. Because each input is connected directly to an input of the DAQ device, you can mix in other types of voltage input signals.

Current Excitation

Each channel of the SC-2042-RTD includes a current excitation source with outputs connected to screw terminals. Each current excitation channel produces 1 mA and can drive loads up to 8.5 k Ω . You can calibrate all eight current outputs with a single onboard potentiometer. **Note:** Current excitation of 1 mA can cause overheating errors with some thermistors.

SC-2043-SG Input Channels

Each input channel of the SC-2043-SG includes an instrumentation amplifier with differential inputs and a fixed gain of 10. The inputs include overvoltage protection of \pm 45 VDC powered on and \pm 30 VDC powered off. Each channel also includes a lowpass noise filter with a bandwidth of 1.6 kHz. The output of each filter is buffered to prevent settling-time delays when used with a multiplexing DAQ device. With the SC-2056 cable adapter accessory, you can use up to four boards to interface 32 strain gauges to a single 6031E, 6033E, or 6071E.

Voltage Excitation

You can use the onboard regulated +2.5 VDC excitation source to power your strain gauge bridges. You can also adjust this supply from 1.5 to 2.5 VDC using an onboard potentiometer. This excitation supply can produce up to 167 mA – enough to drive eight 120 Ω (or higher)

Ordering Information

AMUX-64T	.776366-90
SC-2040	.776937-01
SC-2042-RTD	.777095-01
SC-2043-SG	.777096-01

Rack-Mount Kit with	Acrylic Plastic Covor
Rack-IVIOUNI KII WIIN I	ACTYLIC Plastic Cover

Single height777	7212-01
Double height777	7212-02

Rack-Mount Kit with Metal

Wraparound C	over
--------------	------

Single height .	 777212-11
Double height	 777212-12

Quarter-Bridge Completion Resistors (0.1%, 10 ppm/°C)

8 resistors, 120 Ω	777180-01
8 resistors, 350 Ω	777180-02

Cables

SH6868-EP (1 m)	
R6868 (1 m)	
SH1006868 (1 m)	
R1005050 (1 m)	
PSHR68-68 (Shielded Cable Kit)	777293-01
PR68-68F (1 m)	
68M-50F (1 m)	777660-0R3
NBI (0.5 cm)	

strain gauge bridges. Optionally, you can connect an external excitation source of up to 10 VDC.

Bridge Completion

You can enable full-bridge and half-bridge completion on each channel by setting a jumper that connects the negative input of the channel to the half-bridge network, which consists of two 2.5 k Ω precision resistors. Each channel also includes an open component location for installing quarter-bridge completion resistors. The optional quarter-bridge completion resistors Ω precision resistors.

Offset Nulling

With the postgain offset nulling circuits, you can manually adjust trim pots to null out any bridge offsets (± 5 mV, referred to input) on each input channel.

AMUX-64T		64 single-ended, 32 differentia				
SC-2040		8 differential				
SC-2042-RTD						
SC-2043-SG						
nput coupling				DC		
nput Signal Ra						
Module	Powered	l On	Gain	% of Readir	ng	Offset
AMUX-64T	N/A		N/A	N/A		N/A
SC-2040	±1 V		1	±0.05%		±3.1 mV
	±100 n	nV	10	±0.1%		±400 μV
	±50 m	V	100	±0.2%		±140 μV
	±20 m		200	±0.4%		±120 μV
	±10 \	/	500	±1.0%		±112 μV
SC-2042-RTD1	-		-	-		-
SC-2043-SG	±1 V		10	±0.15%		-
/laximum wor	king volta	nae (s	ianal + com	nmon mode)		
AMUX-64T	.9 . 5	±10	°			
SC-2040				uts should rema	in within	+7 V of around
SC-2040		-	ige of two inp	ats should rema	VVICINI	117 V OI gibana
SC-2043-SG		Each	innut should r	emain within ±1	1 V of a	ound
Overvoltage pr	otection					
	Device		Powered	On	F	Powered Off
AMUX-64T			±35 V			+20 V
00.0040						
SC-2040			±30 V			±15 V
SC-2042-RTD1			-			±15 V
			±30 V - ±42.4 V			
SC-2042-RTD1	ed		-			±15 V
SC-2042-RTD1 SC-2043-SG	ed	CF	-			±15 V
SC-2042-RTD1 SC-2043-SG nputs protecte	ed		_ ±42.4 V			±15 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T	ed	CH	- ±42.4 V I <063>			±15 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040	ed	CH -	- ±42.4 V I <063> I <07>			±15 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040 SC-2042-RTD1 SC-2043-SG		CH - CH	_ ±42.4 V <063> <07>			±15 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040 SC-2042-RTD1 SC-2043-SG Amplifier Cha	racterist	CH - CH	_ ±42.4 V <063> <07>			±15 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040 SC-2042-RTD1 SC-2043-SG Amplifier Cha nput impedan	racterist	CF - CF				±15 V - ±30 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040 SC-2042-RTD1 SC-2043-SG Amplifier Cha nput impedant Device	racterist ce	CH CH ics				±15 V - ±30 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040 SC-2042-RTD1 SC-2043-SG Amplifier Cha nput impedan Device AMUX-64T	racterist ce	CH - CH ics Powere			Powe 500 Ω	±15 V - ±30 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040 SC-2040-RTD1 SC-2043-SG Amplifier Cha nput impedan Device AMUX-64T SC-2040	racterist ce	CF - CF ics 20were 00 Ω in 00 Ω in			500 Ω -	±15 V - ±30 V
SC-2042-RTD1 SC-2043-SG nputs protecte AMUX-64T SC-2040 SC-2042-RTD1 SC-2043-SG Amplifier Cha nput impedan Device AMUX-64T	racterist ce 5 1	CF - CF ics 20were 00 Ω in 00 Ω in				±15 V ±30 V

Specifications

tuqu	Bias	Current	

AMUX-64T ±100 pA	
SC-2040 ±100 pA	
SC-2043-SG ±2.5 nA	

ΠÞ	uı	UI	Isei	cun	ent
_		137	/ AT		

	iput onset current	
Г	AMUX-64T	±100 pA
Г	SC-2040	±10 pA
E	SC-2043-SG	±1.5 nA

CMRR (DC to 60 Hz)

Device	Input Range	CMRR 50 or 60 Hz)	
SC-2040	±10 V	90 dB	
	±1 V	104 dB	
	±100 mV to ± 20 mV	110 dB	
SC-2042-RTD1	-	-	
SC-2043-SG	±1 V	93 dB (minimum)	

Output range

SC-2043-SG	+11 V		
SC-2040	±10 V		
5 - 1			

Dynamic Characteristics Settling time to 10 V

Device	± 0.012% (± 0.5 LSB) Accuracy		
Gain	PCI-6040E with one AMUX-64T	PCI-6040E with four AMUX-64Ts	
0.5 to 5	5 µs	9 µs	
10	6 µs	9 µs	
20	6 µs	11 µs	
50	7 µs	11 µs	
100	9 µs	14 µs	

Bandwidth and System Noise

Module	Input Range	Bandwidth	System Noise
SC-2040	±10 V	2 MHz*	175 µV
	±1 V	800 kHz*	50 μV
	±100 mV	500 kHz*	45 µVs
	±50 mV	300 kHz*	40 µV
	±20 V	120 kHz*	33 µV
SC-2043-SG	±1 V	1.6 kHz	5 μV

Small signal bandwidth

S/H Characteristics (SC-2040 Only)

			Accu	iracy	
Module		±0.012%	±0.0	06%	±0.0015%
SC-2040		7 µs	10	μs	50 µs
Droop rate				±50 ns ±50 ns	
Hold step ±5 mV Stability					
Recommended warm-up time 15 minutes Gain and offset temperature coefficients Cold-Junction Reference (AMUX-64T) only					
Output			10 mV/°	С	
Accuracy	±1.0 °C	from 0	to 110 °C		
Module	Input	Gain Temp	erature	Offse	et Temperature
	Range	Coeffic	ient	(Coefficient
SC 2040	.10 V	2E.ppm/%C		(. 10	1E0/apip) u///°C

	Kange	COEfficient	COEfficient
SC-2040	±10 V	25 ppm/°C	(± 10 ± 150/gain) μV/°C
	±1 V	25 ppm/°C	(± 10 ± 150/gain) μV/°C
	±100 mV	45 ppm/°C	(± 10 ± 150/gain) µV/°C
	±50 mV	60 ppm/°C	(± 10 ± 150/gain) μV/°C
	±20 mV	100 ppm/°C	(± 10 ± 150/gain) μV/°C
SC-2043-SG	±1 V	10 ppm/°C	± 3 μV/°C

Voltage Excitation (SC-2043-SG Only)

hannels	1, connected to 8 screw terminal pairs
evel	2.5 V ± 0.5% (adjustale from 1.5 - 2.5 V)
urrent Drive	167 mA2 (at 2.5 V)
rift	
ridge type	Half or full (jumper selectable); with
	sockets for quarter-bridge completion
ridge completion	Two 2.5 k Ω ± 0.02% ratio tolerance
	(2 ppm/°C drift) resistors
ffset nulling range	± 5 mV (referred to input)

Power Requirements

Device	Voltage	Current
AMUX-64T	± 5 VDC	78 mA
SC-2040	± 5 VDC	800 mA
SC-2042-RTD	± 5 VDC	60 mA
SC-2043-SG 3	± 5 VDC	570 mA
		600 to 770 mA4 (if using internal 2.5 V excitation)

Physical

Cł

Le

Сι Dr Br

Br Of

Dimensions	
AMUX-64T	26.9 by 12.4 cm (10.6 by 4.9 in.)
SC-204x	4.6 by 20.1 by 12.4 cm
	(1.8 by 7.9 by 4.9 in.)
I/O Connectors	
AMUX-64T	
Sensor Signals	64 screw terminals
DAQ Device	Two 50-pin male ribbon connectors
	One 68-pin male SCSI connector
SC-2040	
Sensor Signals	20 screw terminals
DAQ Device	50-pin male ribbon connector
	68-pin male SCSI connector
SC-2042-RTD	
Sensor Signals	68 screw terminals (labeled)
DAQ Device	Two 50-pin male ribbon connectors
SC-2043-SG	
Sensor Signals	72 screw terminals (labeled)
DAQ Device	Two 50-pin male ribbon connectors

Environment

ΕM Saf No FM Aus ΕM

2 F

Operating temperature	0 to 70 °C
Storage temperature	-20 to 70 °C
Relative humidity	5% to 90% noncondensing

Certifications and Compliances Eur

ropean Compliance	
1C	EN 61326 Group I Class A, 10m,
	Table 1 Immunity
fety	EN 61010-1
rth American Compliance	
1C	FCC Part 15 Class A using CISPR
stralia and New Zealand Compliance	
1C	AS/NZS 2064.1/2 (CISPR-11)
The SC-2042-RTD passes analog input si	
Therefore, see your DAQ device for thes	se specifications
Excitation current drive assumes eight fu	ll-bridge 120 $Ω$ strain gauges.
Power requirements assume all 8 inputs	are used or shorted to ground.

- 3 E Open circuited inputs will increase power requirement.
- ⁴ When using internal excitation, the power requirement will depend on number and type of strain gauges. The maximum power requirement listed (770 mA) assumes eight 120 Ω full-bridge inputs. The minimum power requirement listed (660 mA) assumes one 350 Ω half-bridge input.

Accuracy Specifications for Signal Conditioning

Every Measurement Counts

There is little room for error in your measurements. From sensor to software, your system must deliver accurate results. NI provides detailed specifications for our products so that you do not have to guess how they perform. Along with traditional specifications, our signal conditioning products include accuracy tables to assist you in selecting the appropriate hardware for your application. These tables are found on the specification pages for each product.

Absolute Accuracy

Absolute accuracy is the specification you must use to determine the overall maximum possible error of your measurement. Absolute accuracy does assume your signal conditioning equipment has been calibrated within the last year. There are four main components of an absolute accuracy specification:

- % of Reading is an uncertainty factor that is multiplied by the actual imput voltage for the measurement
- Offset is a constant value applied to all measurements
- System Noise is based on noise and depends on the number of points averaged for each measurement
- Temperature Drift is based on variations in your ambient temperature. Absolute Acuracy RTI stands for relative to the input

Based on these components, the formula for calculating absolute accuracy for a given module is:

Absolute Accuracy = (Actual Input Voltage x % of Reading) + Offset + System Noise + Temperature Drift

Absolute Accuracy RTI = ±(Absolute Accuracy/Actual Input Voltage)

Temperature effects are already taken into account unless your ambient temperature is outside of the 15 to 35 °C range. For instance, if your ambient temperature is at 45 °C, you must account for 10 °C of drift. This is calculated by:

Temperature Drift = \pm (Actual Input Voltage x % of Reading/°C + Offset/°C) x Temperature Difference

Below is an example for calculating the absolute accuracy for the SCXI-1102 using the ± 100 mV input range while averaging 100 samples of a 14 mV input signal. In this calculation, we assume the ambient temperature is between 15 and 35 °C, so Temperature Drift = 0. Using the accuracy table on pge 262, you find the following numbers for the calculation:

Actual Input Voltage = 0.014 Percent of Reading Max = 0.02% = 0.0002 Offset = 0.000025 V System Noise = 0.000005 V

Absolute Accuracy = $\pm [(0.014 \times 0.0002) + 0.000025 + 0.000005] V = \pm 32.8 \mu V$

Absolute Accuracy RTI = \pm (0.0000328 / 0.014) = \pm 0.234 %

The following example assumes the same conditions, except the ambient temperature is 40 °C. You can begin with the Absolute Accuracy calculation above and add in the Temperature Drift.

Absolute Accuracy = 32.8 μ V + (0.014 x 0.000005 + 0.000001) x 5 = ±38.15 μ V

DAQ and Signal Conditioning

Accuracy Specifications for Signal Conditioning

In many cases, it is helpful to calculate this value relative to the input (RTI). Therefore, you do not have to account for different input ranges at different stages of your system.

Absolute Accuracy RTI = \pm (0.00003815 / 0.014) = \pm 0.273 %

If you are making single-point measurements, use the Single-Point System Noise specification from the accuracy table. If you are averaging multiple points for each measurement, the value for System Noise changes. The Average System Noise provided in the accuracy table assumes that you average 100 points per measurement. If you are averaging a different number of points, use the following equation to determine your system noise:

> System Noise = Average System Noise from table x SQRT(100/number of points)

For example, if you are averaging 1,000 points per measurement with the SCXI-1102 in the ± 100 mV range, the system noise is determined by:

System Noise = 5 µV x SQRT (100/1000) = 1.58 µV

Absolute System Accuracy

Absolute System Accuracy represents the end-to-end accuracy including the signal conditioning and DAQ device. Because absolute system accuracy includes components set for different input ranges, it is important to use Absolute Accuracy RTI numbers for each component. See page 194 for information on how to calculate the Absolute Accuracy RTI for your particular DAQ device.

Total System Accuracy RTI = \pm SQRT [(Module Absolute Accuracy RTI)² + (DAQ Device Absolute Accuracy RTI)²]

The following example calculates the Absolute System Accuracy for the SCXI-1102 described in the first example, and a PCI-MIO-16XE-50 with an Absolute Accuracy RTI of 0.00368%.

Total System Accuracy RTI = ±SQRT [(0.00273)2 + (0.00003682)] = ±0.273%

Units of Measure

In many applications, you are measuring some physical phenomenon, such as temperature. To determine the absolute accuracy in terms of your unit of measure, you must perform three steps:

- Convert a typical expected value from the unit of measure to voltage
- (2) Calculate absolute accuracy for that voltage
- (3) Convert absolute accuracy from voltage to the unit of measure

Note, it is important to use a typical measurement value in this process, because many conversion algorithms are not linearized. You may want to perform conversions for several different values in your probable range of inputs.

For an example calculation, we want to determine the absolute system accuracy of an SCXI-1102 system with a PCI-MIO-16XE-50, measuring a J-type thermocouple at 100 °C.

- A J-type thermocouple at 100 °C generates 5.268 mV (from a standard conversion table or formula)
- (2) The absolute accuracy for the system at 5.268 mV is ±0.59%. This means the possible voltage reading is anywhere from 5.237 to 5.299 mV.
- (3) Using the same thermocouple conversion table, these values represent a temperature spread of 99.4 to 100.6 °C.

Therefore, the absolute system accuracy is ±0.6 °C at 100 °C.

Benchmarks

The calculations described above represent the maximum error you should receive from any given component in your system, and a method for determining the overall system error. However, you typically have much better accuracy values than what you obtain from these tables.

If you need an extremely accurate system, you can perform an end-to-end calibration of your system to reduce all system errors. However, you must calibrate this system with your particular input type over the full range of expected use. Accuracy depends on the quality and precision of your source.

We have performed some end-to-end calibrations for some typical configurations and achieved the results below:

Module	Empirical Accuracy	
SCXI-1102	±0.25 °C at 250 °C	
	±24 mV at 9.5 V	
SCXI-1112	±0.21 °C at 300 °C	
SCXI-1125	±2.2 mV at 2 V	

Table 1. Possible Empirical Accuracy with System Calibration

To maintain your measurement accuracy, you must calibrate your measurement device at set intervals. Calibration improves your accuracy and ensures that your end product meets its required specifications. We are continually updating the calibration services available for our products. For a current list of SCXI signal conditioning products with calibration services, please visit *ni.com/calibration*