fication. If this prefix differs from that listed on the title page of this manual, there are differences between this manual and your instrument.

1-3. Configuration

There are two configurations available for the Model 776:

- Model 776 - Two-channel 225 MHz programmable counter/timer.
- Model 776/2.4G - Same as above with 2.4 GHz Channel C and TCXO time base.
- Model 776/2.4G/R - Same as above with rear panel inputs.

1-4. Warranty Information

Warranty information is located on the inside front cover of this instructions manual. Should your Model 776 require warranty service, contact the Keithley representative or authorized repair facility in your area for further information. When returning the instrument for repair, be sure to fill out and include the service form at the back of this manual to provide the repair facility with the necessary information.

1-5. Manual Addenda

Any improvements or changes concerning the instrument or manual will be explained in an addendum included with the manual. Be sure to note these changes and incorporate them into this manual.

1-6. Safety Symbols And Terms

The following symbols and terms may be found on an instrument or used in this manual.

The $\$$ symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.

The WARNING heading used in this manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.

The CAUTION heading used in this manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.

1-7. Inspection

The Model 776 was carefully inspected, both electrically and mechanically before shipment. After unpacking all items from the shipping carton, check for any obvious signs of physical damage that may have occurred during transit. (Note: There may be a protective film over the display lens, which can be removed.) Report any damage to the shipping agent immediately. Save the original packing carton for possible future re-shipment. The following items are included with every Model 776 order:

Table 1-1. Model 776 Specifications

```
INPUT CHARACTERISTICS
(Channel A & B)
RANGE
    DC coupled
    AC coupled 1 M \Omega
    50\Omega
SENSITIVITY (X1)
    0 to 200 MHz :50 mV rms sine wave.
    200 MHz to 225 MHz :75 mV rms sine wave.
    5 ns Minimum Pulse Width :75 mVp-p.
SIGNAL OPERATING RANGE
        (X1)
        (X10)
DYNAMIC RANGE (x1)
    0 to }100\textrm{MHz
    100 MHz to 225 MHz
```

: 0 to 225 MHz .
: 30 Hz to 225 MHz .
: 1 MHz to 225 MHz .
: 50 mV rms sine wave.
: 75 mV rms sine wave.
: $75 \mathrm{mVp}-\mathrm{p}$.
: -5.00 Vdc to +5.00 Vdc .
: -50.0 Vdc to +50.0 Vdc .
: 75 mV to $5 \mathrm{Vp}-\mathrm{p}$.
: 150 mV to $2.5 \mathrm{Vp}-\mathrm{p}$.

Table 1-1. Model 776 Specifications (continued)

IMPEDANCE

LOW PASS FILTER
COUPLING
DAMAGE LEVEL (AC or DC)
(X1)
(X10)
50Ω
$1 \mathrm{M} \Omega$ or 50Ω nominal shunted by less than +5 pF . switchable.
-3 dB NOMINAL at 100 KHz . switchable.
AC or DC, switchable.

TRIGGER LEVEL CHARACTERISTICS

(Channel A and B)
MANUAL TRIGGER (auto trigger off)
(X1)
(X10)
Setting Accuracy
Resolution (X1)
Preset (X1)
Trigger Slope
$:-5.00 \mathrm{Vdc}$ to +5.00 Vdc :
: -50.0 Vdc to +50.0 Vdc .
$: X 1 . \pm(35 \mathrm{mV}+2 \%$ of reading $) ; X 10, \pm(350 \mathrm{mV}+2 \%$ of reading).
: $10 \mathrm{mV}:(\mathrm{X} 10): 100 \mathrm{mV}$.
$0.00 \mathrm{Vdc}:(\mathrm{Xl} 0) 00.0 \mathrm{Vdc}$.
Independent selection of positive or negative slope. switchable.

AUTO TRIGGER

Frequency Range
DC Coupled $\quad: 100 \mathrm{~Hz}$ to 150 MHz .
AC Coupled $1 \mathrm{M} \Omega \quad: 100 \mathrm{~Hz}$ to 150 MHz .
$50 \Omega \quad: 1 \mathrm{MHz}$ to 150 MHz .
Auto Trigger Level Range : $\pm 50 \mathrm{Vp}-\mathrm{p}$.
Minimum Amplitude
100 mV rms sine wave. 280 mVp -p.
ATTENUATOR
Manual : XI or X10 NOMINAL. sclectable.
Auto : Attenuator is automatically enabled when in Auto Trigger Mode.
Auto Attenuator Sensitivity
: Attenuator is switched when peak input signal exceeds 5.1
Vp-p.
NOTES:

1. Auto trigger is disabled in the following functions: Totalize B and Frequency C.
2. Auto trigger function requires that a repetitive signal be present at the input connector.

FREQUENCY A \& FREQUENCY B

Measurement Technique

Range operating modes: Conventional, above 120 MHz .
Measurement technique is automatically selected by the instrument.
: 0.01 Hz to 225 MHz .

Table 1-1. Model 776 Specifications (continued)
$\mathrm{LSD}^{(1)} \begin{gathered}\text { Displayed } \\ \text { Reciprocal }\end{gathered}$

Conventional
Resolution

Accuracy

FREQUENCY C

(available with Model 776/2.4G)
Range
Input Impedance
Sensitivity
Dynamic Range
VSWR
Damage Level
LSD ${ }^{(1)}$ Displayed
Resolution
Accuracy

4 ns x frequency
gate time. e.g min 9 digits in one second of gate time.
4/gate time.
$\pm \mathrm{LSD} \pm \frac{\left(1.4 \times \text { Trig error }{ }^{(2)} \times \text { Frequency }\right)}{\text { gate time }}$
$: \pm$ resolution \pm Time Base error ${ }^{(3)} \times$ Frequency

TIME MEASUREMENT - SINGLE SHOT

PERIOD A, PULSE A, TIME INTERVAL A to B

Range:
Period A. Pulse A : 5 ns to 2000 s .
Time Interval A to B : 0 ns to 2000 s .
LSD ${ }^{(1)}$ Displayed
Below 20 s
: 1 ns ;
Above $20 \mathrm{~s} \quad: 5 \times$ Time $\times 10^{-10} \mathrm{~s}$.
Resolution
Below 20 s
Above 20 s
Accuracy

Time Delay

Internal

Internal Range
Preset Position
External
External Range
$: \pm 2$ LSD \pm start trigger error ${ }^{(2)} \pm$ stop trigger error ${ }^{(2)}$.
: 1 LSD.
$: \pm$ (Time Base error $^{(3)} \times$ Time) \pm Trig level timing error ${ }^{(4)}$
$\pm 1 \mathrm{~ns} \pm$ resolution.
: Active only with Time Measurements - single. First input transition opens the gate. Delay inhibits the consequent transitions.
: 500 internal pre-programmed delay intervals can be inserted between START and STOP of Time Interval A to B. Inputs during delay are ignored.
$: 100 \mu \mathrm{~s}$ to 100 s .
: 1 s.
: User selectable delay intervals can be applied through rear panel BNC connector.
: $100 \mu \mathrm{~s}$ to 2000 s .

Table 1-1. Model 776 Specifications (continued)

TIME MEASUREMENTS AVERAGED

PERIOD A AVERAGED

Range	$: 8 \mathrm{~ns}$ to 10 s.
LSD $^{(1)}$ Displayed	$: \frac{4 \mathrm{~ns} \times \text { Period. }}{\text { gate time }}$ e.g min 9 digits in 1 second of gate time.
Resolution	$: \pm \mathrm{LSD} \pm \frac{\left(1.4 \times \text { Trig error }{ }^{(2)} \times \text { Period) }\right.}{\text { gate time }}$
Accuracy	$: \pm$ resolution \pm (Time Base error ${ }^{(3)} \times$ Period).
Number of Periods Averaged	$: \quad N=\frac{\text { gate time }}{\text { Period }}$

PULSE A, TIME INTERVAL A to B AVERAGED

Range
Pulse A : 5 ns to 10 s

Time Interval A to B
LSD ${ }^{(1)}$ Displayed
Resolution
Accuracy

Dead Time Stop to Start
Number of Samples Averaged
PHASE A to B AVERAGED
Range
example
Frequency Range
LSD ${ }^{(1)}$ Displayed
Resolution
Accuracy

Number of Cycles Averaged
Minimum Amplitude
TOTALIZE B
Frequency Range $\quad: 0$ to 120 MHz .
Totalizing Range $\quad: 0$ to $10^{16}-1$.
Gate Modes
Infinite : Totalizing on B indefinitely.
Gated by A
Gated by AA
Gating Transition
Dead Time Stop to Start ${ }^{(7)}$
: 5 ns to 10 s
: -3 ns to 10 s (A and B signals must have the same repetition rate).
: $4 \mathrm{~ns} / \sqrt{\mathrm{N}}$.
: \pm ($1 \mathrm{LSD}+10 \mathrm{ps}$).
$: \pm$ (Time Base Error ${ }^{(3)} \times$ Time $) \pm 1 \mathrm{~ns} \pm$ resolution
\pm Trigger Level Timing Error ${ }^{(4)} \pm$ (Trigger error) $/ \sqrt{\mathrm{N}}$
: 20 ns minimum.
: $\mathrm{N}=$ gate time \times Frequency.
: 0 to $360^{\circ} \times(1-20 \mathrm{~ns} \times$ Frequency A).
: 0 to 359.99° at $1 \mathrm{KHz}: 0$ to 180.0° at 25 MHz .
$: 0.1 \mathrm{~Hz}$ to 25 MHz . A and B signals must have the same frequency.
$: 4$ ns $\times 360^{\circ} \times(1+\sqrt{\mathrm{N}})$
gate time or 0.01°. whichever is greater.
: ± 1 LSD.
$: \pm$ resolution $\pm\left(1 \mathrm{~ns} \times\right.$ Frequency A $\left.\times 360^{\circ}\right) \pm$
\pm Trigger Level Timing Error ${ }^{(4)}$ x Frequency $\left.A \times 360^{\circ}\right) \pm$
$\pm \frac{\left(\text { Trigger error }{ }^{(2)} \times \text { Frequency } A \times 360^{\circ}\right)}{\sqrt{N}}$
: $\mathbf{N}=$ gate time \times Frequency A.
100 mV rms sine wave.
: Totalizing on B between a pair of two consecutive transitions of the opposite direction on A.
: Totalizing on B between a pair of two consecutive transitions of the same direction on A.
: Positive or Negative transitions, selectable.
: 20 ns min from stop transition to the next start transition.

Table 1-1. Model 776 Specifications (continued)

LSD displayed	$: 1$ count of channel B input signal.
Resolution	$: 1 \mathrm{LSD}$.
Accuracy	
\quad Infinite	$:$ Same as LSD.
\quad Gated by A, Gated by AA	$: \pm \frac{\text { pulse repetition rate } \mathrm{B} \times \text { Trigger error }^{(2)} \mathrm{A}}{\text { total counts } \mathrm{B}}$

RATIO A/B
Frequency Range
A $: 0.01 \mathrm{~Hz}$ to 225 MHz ;
B $\quad: 0.01 \mathrm{~Hz}$ to 125 MHz .
$\mathrm{LSD}^{(1)}$ displayed $4 \times$ Ratio

$$
\text { Frequency A } \times \text { gate time }
$$

Resolution $\quad: \pm$ LSD $\pm \frac{\text { Trigger error } B^{(2)} \times \text { Ratio }}{\text { gate time }}$
Accuracy : Same as resolution.
RATIO C/B
Frequency Range
$\mathrm{C} \quad: 50 \mathrm{MHz}$ to 2.4 GHz ;
B
LSD ${ }^{(1)}$ displayed
10 Hz to 225 MHz .
: $4 \times$ Ratio
Frequency $B \times$ gate time
Resolution and Accuracy
: \pm LSD.
V PEAK A
Function

Frequency range
Slow Rate
Fast Rate
: 40 Hz to 10 MHz :
$: 100 \mathrm{~Hz}$ to 10 MHz .
Dynamic Range
: 280 mV p-p to 51 V p-p.
Resolution x1

Accuracy $\quad: \pm$ resolution $\pm 0.1\left(\mathrm{~V}_{\mathrm{pos}} \mathrm{pk}-\mathrm{V}_{\mathrm{neg}} \mathrm{pk}\right) \pm 35 \mathrm{mV}$.
GATE TIME
Internal Gate Time
Internal Gate Time
Internal Range
Preset Position
10 mV ; x10: 100 mV . Attenuator is activated automatically if either the positive or the negative peaks of the input signal exceeds $\pm 5.1 \mathrm{~V}$ or when the peak to peak voltage exceeds 5.1 V .
: 500 pre-programmed gate time intervals.
$100 \mu \mathrm{~s}$ to 10 s or one period of the input. which ever is longer.
: 1 s .
External Gate Time
: User selectable gate time intervals, ranging from $100 \mu \mathrm{~s}$ to 1000 s .
Esternal Range
: $100 \mu \mathrm{~s}$ to 2000 s . External gate not available with Time measurements - single shot. Totalize B and Phase A to B.
External Input Rear panel BNC connector: accepts TTL level signals.
External Gate Delay ${ }^{(6)}:<10 \mu \mathrm{~s}$.

Table 1-1. Model 776 Specifications (continued)
EXTERNAL ARMING (TRIGGER)

Function

Input
Impedance
Level
Logic
Minimum Pulse Width
Trigger Delay ${ }^{(5)}$
STANDARD TIME BASE
Frequency
Aging Rate
Temperature Stability
Line Voltage
Clock IN/OUT
External Time Base Input
Time Base Out

TCXO TIME BASE

(available with Model 776/2.4G)
Frequency $: 10 \mathrm{MHz}$
Aging Rate
Temperature Stability
Line Voltage
Clock IN/OUT
External Time Base Input
Time Base Out
GPIB INTERFACE
Programmable Controls
Multiline Commands
Uniline Commands
Interface Functions
Data Output Format Reading
Gate/Delay Time and Trigger Level
Data Output
Single Shot
Normal Mode
Fast Mode
Address Selection
GENERAL
Display Rate

Normal	$:$ Approximately four measurements per second:
Hold	$:$ Single shot measurement. taken with each press of RESET:
Fast	$:$ Up to 100 measurements per second.

Table 1-1. Model 776 Specifications (continued)

Arming

Reset
Trigger Level Outputs
Accuracy
Output Impedance
Display
Displayable Digits
Gate
Stored Set-ups

Operating Temperature
Storage Temperature
Power Requirements
Warm-Up
Dimensions
Rack Mount Dimensions
Weight:
Accessories Furnished:

DEFINITION OF TERMS

(1) LSD
(2) Trigger Error
(3) Time Base Error
(4) Trigger Level Timing Error (xl)
5) External arming (trigger) delay
(6) External gate delay
(7) Dead Time
: Each channel is armed by it's own signal
Clears display and re-cycles measurement.
DC Outputs via rear panel terminals. not adjusted for attenuators.
: $\mathrm{DC}(\mathrm{X} 1) \pm 35 \mathrm{mV} \pm 2 \%$ of trigger level reading.
: $1 \mathrm{~K} \Omega, 1 \%$.
: 10 digits seven segments LED. $0.56^{\prime \prime}$ high. 2 digits for exponent.
: Selectable from 3 to 10 most significant digits.
: LED indicator lights when gate is open.
: Ten measurement set-ups. including trig levels, gate/delay time, input conditioning and measurement rate may be stored in memory and subsequently recalled. When AC mains power is removed, a non-volatile memory preserves the stored set-ups for a typical period of 3 years.
: 0 to $50^{\circ} \mathrm{C}$ ambient, 0 to 80% relative humidity.
: -25 to $65^{\circ} \mathrm{C}$.
: $115 / 230 \mathrm{~V} \mathrm{rms} \pm 10 \%$ (rear panel switch select) $48-60 \mathrm{~Hz}$. 30 W maximum.
$: 1$ hour to rated accuracy and stability.
: $3.5^{\prime \prime} \times 8.3^{\prime \prime} \times 15.4^{\prime \prime}(\mathrm{H} \times \mathrm{W} \times \mathrm{D}) 89 \times 2 \mathrm{ll} \times 391 \mathrm{m"m}$.
$: 3.5^{\prime \prime} \times 19^{\prime \prime}(\mathrm{H} \times \mathrm{W}) 89 \times 483 \mathrm{m"m}$.
approximately $8 \mathrm{lb}(3.5 \mathrm{~kg})$.
Power Cord, Operating Manual.
: Unit value of least significant digit. Calculation should be rounded as follows 1 to $<5 \mathrm{~Hz}$ becomes $1 \mathrm{~Hz}, 5 \mathrm{~ns}$ to $<10 \mathrm{~ns}$ becomes 10 ns etc.
$: \quad \sqrt{ }\left(e_{i}^{2}+e_{n}^{2}\right)$
Input slew rate at trigger point
Where: e_{i} is the rms noise voltage of the counter's input channel ($250 \mu \mathrm{~V}$ typ.) e_{n} is the rms noise of the input signal for 225 MHz band-width.
: Maximum fractional frequency change in time base frequency due to all errors: e.g aging, temperature, line voltage etc.

$: \frac{18 \mathrm{mV}}{$| Input slew rate at |
| :--- |
| start trigger point |}$\pm \underset{$| Input slew rate at |
| :--- |
| stop trigger point |$}{18 \mathrm{mV}}$

: Delay from the positive going slope of the arming signal to the internal gate open signal.
: Delay from the positive going slope of the gating signal to the internal gate open signal.
: Minimum time between measurement which the counter is busy in performing the measurement. The counter will not at this time respond to any input transition.

- Model 776 Programmable Counter/Timer with line cord.
- Model 776 Instructions Manual.

If an additional manual is required, order:

- Keithley part number 776-901-00.

1-8. Specifications

Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested.

NOTE

All specifications in the following table apply after a warm-up period of 1 hour and at ambient temperature of $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

